CMSC 27400-1/37200-1 Combinatorics and Probability

Spring 2005

Lecture 19: May , 2005

Instructor: László Babai Scribe: Raghav Kulkarni

NOTE: Change in Monday's TA schedule; no change Tuesday and Thursday. TA SCHEDULE: TA sessions are held in Ryerson-255, Monday 7:30-8:30,

Tuesday and Thursday 5:30-6:30pm.

INSTRUCTOR'S EMAIL: laci@cs.uchicago.edu

TA's EMAIL: hari@cs.uchicago.edu, raghav@cs.uchicago.edu

Martingales

Definition: If X, Y are random variables in the same probability space then the conditional expectation of X conditioned on Y, is a random variable $Z := E(X|Y) : \Omega \to \mathbb{R}$ defined as Z(a) = E(X|Y = Y(a)).

Some Observations:

- (i) If c is a contant random variable, then E(X|c) = E(X).
- (ii) The number of different values taken by $E(X|Y) \leq$ the number of different values taken by Y.
- (iii) If X and Y are independent then E(X|Y) = E(X).
- (iv) E(X|X) = X.
- (v) $E(X^2|X) = X^2$.

 $E(X|X^2)$ has no simple formula. It depends on the proportion of the positive and negative values of X in each part $X^2 = a$.

Definition: The stochastic process is a sequence of random variables, X_0, X_1, X_2, \ldots

Example of a stochastic process: Gambler's ruin

Suppose a gambler starts with amount X_0 . At every gamble, he loses with probability $\frac{1}{2}$ and wins with probability $\frac{1}{2}$. The amount decreases by 1 when he loses and increases by 1 when he wins. X_i is the random variable denoting the amount that the gambler has after i gambles. X_0, X_1, \ldots is a stochastic process.

$$E(X_1) = X_0.$$

 $E(X_2) = X_0$. (Why?)

 $E(X_2|X_1) = X_1.$

 $E(X_{i+1}|X_i) = X_i.$

Definition: The martingale is a stochastic process in which $(\forall i)(E(X_{i+1}|X_i)=X_i)$.

Theorem 19.1 (Hoeffding-Azuma: Concentration Inequality) Suppose $X_0 = c$, a constant. $X_0, X_1, X_2, \ldots, X_n$ is a martingale and $(\forall i)(|X_{i+1} - X_i| \leq 1)$ then

$$P(|X_n - X_0| \ge a) \le 2e^{\frac{-a^2}{2n}}$$
.

The Chernoff's bound is a special case of the above theorem. (Why?)

Exercise 19.2 For i = 0, 1, ..., let Y_i be independent random variables such that $|Y_i| \le 1$ and $E(Y_i) = 0$. Let $X_i = Y_1 + \cdots + Y_i$. Prove that $X_0, X_1, dots$ is a martingale.

Doob-martingale

Let $Y_0 = c$, a constant. Let Y_0, Y_1, \ldots, Y_n be a stochastic process. Let $X_i = E(Y_n|Y_i)$. So $X_0 = E(Y_n)$. $X_n = E(Y_n|Y_n) = Y_n$. X_0, X_1, \ldots, X_n is called Doob-martingale.

Exercise 19.3
$$E(X_i) = E(Y_n) = X_0$$
. $E(X_{i+1}|X_i) = X_i$.

Chromatic number of random graphs Recall that for any graph G, $\chi(G) \geq \frac{n}{\alpha(G)}$.

Theorem 19.4 For a random graph G on n vertices, almost always $\alpha(G) = \Theta(\log n)$, i.e., $P(\alpha(G) = \Theta(\log n)) \to 1$ as $n \to \infty$.

Exercise 19.5 $\chi(G) = \Theta(\frac{n}{\log n})$ almost always.

Theorem 19.6 $\exists k(n)$)($\forall g(n) \rightarrow infty$)(almost always $|\chi(G) - k(n)| < g(n)\sqrt{n}$).

Exercise 19.7 Modify the proof of Chernoff to prove this.

Exercise 19.8 Prove the theorem.