CMSC 27400-1/37200-1 Combinatorics and Probability

Spring 2005

Lecture 14: April 29, 2005

Instructor: László Babai Scribe: Hariharan Narayanan

NOTE: Change in Monday's TA schedule; No change Tuesday and Thursday TA SCHEDULE: TA sessions are held in Ryerson-255, Monday 7:30-8:30pm,

Tuesday and Thursday 5:30–6:30pm.

INSTRUCTOR'S EMAIL: laci@cs.uchicago.edu

TA's EMAIL: hari@cs.uchicago.edu, raghav@cs.uchicago.edu

Sperner's theorem

Theorem 14.1 (Sperner's theorem) If $A_1, \ldots, A_m \subseteq [n]$ is a Sperner family (i. e. antichain) then $m \leq \binom{n}{\lfloor n/2 \rfloor}$.

Exercise 14.2 Every uniform set system is Sperner.

Lemma 14.3 (BLYM inequality) If A_1, \ldots, A_m is a Sperner family, then

$$\sum_{i=1}^{m} \binom{n}{A_i} \le 1.$$

Note: LYM: Lubell-Yamamoto-Meshalkin. The inequality is usually referred to as "LYM inequality" even though Béla Bollobás, then an undergraduate, proved it first and in a more general form.

We prove that BLYM inequality implies Sperner's theorem. **Proof:** Suppose A_1, \ldots, A_m is

a Sperific ranniy.
$$1 \le \sum_{i=1}^{m} \binom{n}{|A_i|}^{-1} \le \sum_{i=1}^{m} \binom{n}{\lfloor n/2 \rfloor}^{-1} = \frac{m}{\binom{n}{\lfloor n/2 \rfloor}}.$$
We now prove the DLYM inequality.

Let 2^A be the set of all subsets of A. $|2^A| = 2^{|A|}$ and $(2^A, \subseteq)$ is a poset. Let |A| = n. Maximal chains in 2^A have length n+1. The number of maximal chains is n!.

Let \mathcal{C} be a random maximal chain in $2^{[n]}$.

Let $X := |\{i \mid A_i \in \mathcal{C}\}|$

(This is a random variable.) The Sperner property implies $X \leq 1$. (Why?). Now $X = \sum Y_i$;

 $Y_i = 1$ if $A_i \in \mathcal{C}$, and 0 otherwise. So Y_i is the indicator of the event " $A_i \in \mathcal{C}$." $E(X) = \sum_{i=1}^{m} E(Y_i)$. Summarizing,

$$1 \ge E(X) = \sum_{i=1}^{m} {n \choose |A_i|}^{-1}.$$

 $E[Y_i] = P(A_i \in \mathcal{C}) = P(A_i \text{ is a prefix in a random ordering of } [n]) = \binom{n}{|A_i|}^{-1}$ (by symmetry, since A_i could be any of the $\binom{n}{|A_i|}$ subsets of size $|A_i|$ under the random ordering).

Let m(k) denote minimum number of edges in a k-uniform hypergraph which is not 2-colorable. So m(2) = 3.

Theorem 14.4 (Erdős) $2^{k-1} < m(k) < ck^2 2^{k-1}$.

For the hypergraph to be 2-colorable, there must exist a partition $R \dot{\cup} B$ of $\bigcup A_i$ such that $(\forall i)(A_i \not\subseteq B \text{ and } A_i \not\subseteq R)$. We shall only prove the lower bound $2^{k-1} < m(k)$ here.

Comment on upper bound: proof by probabilistic method; no constructive proof known. But we can prove constructively that $m(k) < 4^k$.

For the hypergraph to be 2-colorable, there must exist a partition $R \dot{\cup} B$ of $\bigcup A_i$ such that $(\forall i)(A_i \not\subseteq B \text{ and } A_i \not\subseteq R)$.

 K_{2k-1}^k is not 2-colorable - by the Pigeon-hole Principle, some k vertices must have the same color. Thus

$$m(k) \le {2k-1 \choose k} < 2^{2k-1} < 4^k.$$

Proof of the lower bound.

If $m \leq 2^{k-1}$, then the hypergraph is always 2-colorable. Color the vertices Red and Blue at random.

Claim 14.5

$$P(Coloring\ illegal) < 1.$$

Proof: $P(A_i \text{ monochromatic}) = 2^{1-k}$.

 $P(\exists i \text{ such that } A_i \text{ monochromatic }) < m2^{1-k} \le 1$ (Union Bound)

The inequality is strict because the events " A_i monochromatic" overlap, for example, when all vertices have the same color.

Large graphs without 4-cycles

Recall Thm 4.7 (Kővári, Sós, Turán): $ex(n, C_4) = O(n^{3/2}).$

Here is an example to show that this bound is tight. We need to construct graphs on n vertices and $\Omega(n^{3/2})$ edges, without 4-cycles. Consider the two dimensional plane over F_p of

integers (mod p). The points are $P = F_p \times F_p$; lines are sets of points satisfying a linear equation (mod p):

$$ax + by + c \equiv 0 \pmod{p}$$
,

where not both a and b are $\equiv 0 \pmod{p}$. Consider the "Levy Graph" of the plane whose vertex set is $P \cup L$. An edge joins $p \in P$ and $\ell \in L$ if and only if p is a point lying on line ℓ . Therefore, in the Levy graph, the number of vertices $n = p(2p+1) \ 2p^2$ (why?), and the number of edges $m = p^2(p+1) \ 2p^3$ (why?). Thus $m = \Theta(n^{3/2})$.