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CMSC 27400-1/37200-1 Combinatorics and Probability Spring 2005

Lecture 14: April 29, 2005
Instructor: László Babai Scribe: Hariharan Narayanan

NOTE: Change in Monday’s TA schedule; No change Tuesday and Thursday
TA SCHEDULE: TA sessions are held in Ryerson-255, Monday 7:30-8:30pm,
Tuesday and Thursday 5:30–6:30pm.
INSTRUCTOR’S EMAIL: laci@cs.uchicago.edu
TA’s EMAIL: hari@cs.uchicago.edu, raghav@cs.uchicago.edu

Sperner’s theorem

Theorem 14.1 (Sperner’s theorem) If A1, . . . , Am ⊆ [n] is a Sperner family (i. e.antichain)
then m ≤

(
n

bn/2c

)
.

Exercise 14.2 Every uniform set system is Sperner.

Lemma 14.3 (BLYM inequality) If A1, . . . , Am is a Sperner family, then

m∑
i=1

(
n

Ai

)
≤ 1.

Note: LYM : Lubell-Yamamoto-Meshalkin. The inequality is usually referred to as “LYM
inequality” even though Béla Bollobás, then an undergraduate, proved it first and in a more
general form.
We prove that BLYM inequality implies Sperner’s theorem. Proof: Suppose A1, . . . , Am is

a Sperner family.

1 ≤
m∑

i=1

(
n

|Ai|

)−1

≤
m∑

i=1

(
n

bn/2c

)−1

=
m(
n

bn/2c

) . 2

We now prove the BLYM inequality.
Let 2A be the set of all subsets of A. |2A| = 2|A| and (2A,⊆) is a poset. Let |A| = n. Maximal
chains in 2A have length n + 1. The number of maximal chains is n!.
Let C be a random maximal chain in 2[n].
Let X := |{i |Ai ∈ C}|
(This is a random variable.) The Sperner property implies X ≤ 1. (Why?). Now X =

∑
Yi;

1
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Yi = 1 if Ai ∈ C, and 0 otherwise. So Yi is the indicator of the event “Ai ∈ C.”

E(X) =
m∑

i=1

E(Yi). Summarizing,

1 ≥ E(X) =
m∑

i=1

(
n

|Ai|

)−1

.

E[Yi] = P (Ai ∈ C) = P (Ai is a prefix in a random ordering of [n]) =
(

n
|Ai|

)−1
(by sym-

metry, since Ai could be any of the
(

n
|Ai|

)
subsets of size |Ai| under the random ordering).

2

Let m(k) denote minimum number of edges in a k-uniform hypergraph which is not 2-
colorable. So m(2) = 3.

Theorem 14.4 (Erdős) 2k−1 < m(k) < ck22k−1.

For the hypergraph to be 2-colorable, there must exist a partition R∪̇B of
⋃

Ai such that
(∀i)(Ai 6⊆ B and Ai 6⊆ R). We shall only prove the lower bound 2k−1 < m(k) here.
Comment on upper bound: proof by probabilistic method; no constructive proof known.
But we can prove constructively that m(k) < 4k.
For the hypergraph to be 2-colorable, there must exist a partition R∪̇B of

⋃
Ai such that

(∀i)(Ai 6⊆ B and Ai 6⊆ R).

Kk
2k−1 is not 2-colorable - by the Pigeon-hole Principle, some k vertices must have the same

color. Thus

m(k) ≤
(

2k − 1

k

)
< 22k−1 < 4k.

Proof of the lower bound.
If m ≤ 2k−1, then the hypergraph is always 2-colorable. Color the vertices Red and Blue at
random.

Claim 14.5
P (Coloring illegal) < 1.

Proof: P (Ai monochromatic) = 21−k.
P (∃i such that Ai monochromatic ) < m21−k ≤ 1 (Union Bound)
The inequality is strict because the events “Ai monochromatic” overlap, for example, when
all vertices have the same color. 2

Large graphs without 4-cycles

Recall Thm 4.7 (Kővári, Sós, Turán):
ex(n, C4) = O(n3/2).
Here is an example to show that this bound is tight. We need to construct graphs on n
vertices and Ω(n3/2) edges, without 4-cycles. Consider the two dimensional plane over Fp of
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integers (mod p). The points are P = Fp × Fp; lines are sets of points satisfying a linear
equation (mod p):

ax + by + c ≡ 0(mod p),

where not both a and b are ≡ 0(mod p). Consider the “Levy Graph” of the plane whose
vertex set is P ∪ L. An edge joins p ∈ P and ` ∈ L if and only if p is a point lying on line
`. Therefore, in the Levy graph, the number of vertices n = p(2p + 1) 2p2 (why?), and the
number of edges m = p2(p + 1) 2p3 (why?). Thus m = Θ(n3/2). 2


