CMSC 27400-1/37200-1 Combinatorics and Probability

Spring 2005

Lecture 13: April 27, 2005

Instructor: László Babai Scribe: Raghav Kulkarni

TA SCHEDULE: TA sessions are held in Ryerson-255, Monday, Tuesday and Thursday 5:30–6:30pm.

INSTRUCTOR'S EMAIL: laci@cs.uchicago.edu

TA's EMAIL: hari@cs.uchicago.edu, raghav@cs.uchicago.edu

IMPORTANT: Take-home test Friday, April 29, due Monday, May 2, before class.

Permutations

Definition: A permutation of a set A is a bijection $f: A \to A$.

Examples of permutation: Let A = [6].

Let
$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 5 & 1 & 2 & 6 \end{pmatrix}$$

Let
$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 6 & 4 \end{pmatrix}$$

Definition: A digraph G is a permutation graph if $(\forall v \in V(G))(\deg^+(v) = \deg^-(v) = 1)$. $(\deg^+(v))$ is the outdegree of v and $\deg^-(v)$ is the indegree of v.)

Note that there is a bijection between the set of permutations of A and the set of permutation graphs on vertex set A. So, every permutation can be uniquely represented as a permutation graph.

Definition: A k-cycle is a permutation whose permutation graph consists of a directed k-cycle and directed self loops on rest of the vertices.

Let
$$x^f := f(x)$$
.

Multiplication (composition) of permutations: The product fg of the permutations f and g is a permutation defined as: $x^{fg} := (x^f)^g$ (first apply f, then apply g).

With f and g as in the examples of permutation:

Exercise 13.1 Show that any permutation graph is a union of disjoint directed cycles.

Thus we have the cycle notation of a permutation: every permutation can be represented by a disjoint union of cycles.

Examples: The above examples of permutation can be represented in cycle notation as

follows: f = (1,4)(2,3,5)(6) and g = (1,2,3)(4,5,6). ((2,3,5) = (3,5,2) = (5,2,3)).

Definition: The support of a permutation f: supp $(f) := \{x \in A \mid x^f \neq x\}$.

Definition: The permutations f and g are disjoint if $supp(f) \cap supp(g) = \emptyset$.

Exercise 13.2 If f, g are disjoint then fg = gf. (f, g commute.)

Exercise 13.3 Find permutations f and g such that fg = gf but f, g are not disjoint and $f \neq g$.

Exercise 13.4 True or False?: f and g commute iff $(\exists a \text{ permutation } h, \text{ integers } a, b) <math>(f = h^a, g = h^b)$.

Definition: The identity permutation on A is the identity map $id_A: x \mapsto x$.

Observation: $(\forall f)(id_A f = fid_A = f)$. $supp(id_A) = \emptyset$.

Definition: The inverse of a permutation f is a permutation g such that $fg = gf = id_A$. The inverse of f is denoted by f^{-1} . $supp(f^{-1}) = supp(f)$.

Definition: A permutation f is fixed point free if supp(f) = A, i.e., $(\forall x)(x^f \neq x)$.

The set of all permutations form a group called the Symmetric Group S_A . If |A| = n then the group is called the symmetric group of degree n and it is denoted by S_n . $|S_n| = n!$.

Definition: Let $B \subseteq S_n$. The subgroup generated by B, $\langle B \rangle := \text{set of all possible products}$ of elements of B (and their inverses).

Definition: The order of a permutation f is the smallest k > 0 such that $f^k = id$.

Theorem 13.5 (Prime Number Theorem (PNT)) $\pi(x) \sim \frac{x}{\ln x}$ where $\pi(x) := the number of primes <math>\leq x$.

Exercise 13.6 Show that
$$\prod_{p \le x} p = e^{x(1+o(1))}$$
, i.e., show that $\ln(\prod_{p \le x} p) \sim x$. (Hint: PNT.)

Exercise 13.7 If p_n is the n^{th} prime number then PNT (Theorem 13.5) is equivalent to $p_n \sim n \log n$.

Exercise 13.8 $\sum_{p \le x} p \sim \frac{x^2}{2 \ln x}$.

Exercise 13.9 Combine Exercise 13.7 and 13.8 to show that the largest order of a permutation is at least $e^{\sqrt{n \ln n}(1-\epsilon)}$ for every $\epsilon > 0$. (Hint: Cycle decomposition $2+3+5+7+11+\ldots$)

Theorem 13.10 (Landau) The largest order of a permutation is $< e^{\sqrt{n \ln n}(1+\epsilon)}$ for every $\epsilon > 0$.

Consider a random permutation f. Let $\ell_1 := \text{length of the } first \; cycle \; \text{of } f \; (first \; cycle \; \text{is the } cycle \; \text{containing 1.})$ The probability that the legth of the first cycle of f is 1 is: $P(\ell_1 = 1) = \frac{1}{n}$. $P(\ell_1 = n) = \frac{1}{n}$. (Why?)

Exercise 13.11 Show that for every i, $P(\ell_1 = i) = \frac{1}{n}$. (Give an AH-HA proof and also a tedious (calculating numerator) proof.)

Definition: A transposition is a permutation which is a 2-cycle.

Exercise 13.12 (a) How many transpositions are there in S_n ? (b) Prove the transpositions generate S_n .

Exercise 13.13 Prove that the minimum number of transpositions needed to generate S_n is n-1.

Let
$$T = \{(1, 2), (1, 2, \dots, n)\}.$$

Exercise 13.14 Prove that T generates S_n .

Definition: The diameter of a group G with respect to a set S of generators is the maximum over $g \in G$ of the length of the shortest word representing g in terms of members of S and their inverses.

Exercise 13.15 Prove that the diameter of S_n with respect to T is $\Theta(n^2)$.

OPEN PROBLEM: Does there exist a set of generators of S_n with respect to which the diameter of S_n is greater than $O(n^2)$?

CONJECTURE: For any set of generators of S_n , the diameter is polynomially bounded $(O(n^k))$ for some constant k).