CMSC 27400-1/37200-1 Combinatorics and Probability

Spring 2005

Lecture 4: April 04, 2005

Lecturer: László Babai Scribe: Raghav Kulkarni

TA SCHEDULE: TA sessions are held in Ryerson-255, Tuesday and Thursday 5:30-6:30pm.

INSTRUCTOR'S EMAIL: laci(AT)cs(dot)uchicago(dot)edu

TA's EMAIL: hari(AT)cs(dot)uchicago(dot)edu, raghav(AT)cs(dot)uchicago(dot)edu

Extremal Graph Theory

Question: What is the maximum number of edges of a graph with n vertices without K_3 ?

Notation: Let $ex(n, K_3)$ denote the maximum number of edges of a graph with n vertices without K_3 . In general, let ex(n, U) denote the maximum number of edges of a graph with n vertices without having a subgraph isomorphic to U. An extremal graph is one which has the optimum number of edges under the given constraint.

A complete biparite graph with parts of size a and b has n = a + b vertices and m = ab edges. It is denoted by $K_{a,b}$. (Cf. Graphs and Digraphs handout.)

Observations: (a) The 5-cycle demonstrates that $ex(5, K_3) \geq 5$.

(b) $K_{2,3}$ demonstrates that $ex(5, K_3) \ge 6$.

Theorem 4.1 (Mandel-Turán Theorem) (a) $ex(n, K_3) = \lfloor \frac{n^2}{4} \rfloor$ and (b) the only extremal graph is $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$.

Proof Idea: Induction on n in steps of 2.

Base cases: n = 1, n = 2.

Now suppose $n \geq 3$.

Inductive Hypothesis: Assume that the result is true with n-2 in place of n.

Inductive step: Let G be a graph on n vertices. If G doesn't have any edges then we are done. Otherwise, pick an edge (u, v). Consider $G' = G \setminus \{u, v\}$ (we delete the vertices u, v and all edges incident with them). G' has n-2 vertices. Therefore, by the Inductive Hypothesis, $m' = E(G') \leq \frac{(n-2)^2}{4}$.

Since G doesn't have a triangle, u and v don't have any common neighbors. So there are at most n-2 edges from $\{u,v\}$ to V(G').

Therefore,
$$m = |E(G)| \le 1 + (n-2) + m'$$

 $\le 1 + (n-2) + \frac{(n-2)^2}{4} = \frac{n^2}{4}$.

Exercise 4.2 Show that $K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$ is the only extremal graph.

Exercise 4.3 Disprove: $\exists n_0$, $\epsilon > 0$ such that $\forall n \geq n_0$ if $G \not\supseteq K_3$, G not bipartite, then $m \leq \frac{n^2}{4}(1-\epsilon)$.

Exercise 4.4 (*) Prove: $\exists n_0$, C > 0 such that $\forall n \geq n_0$ if $G \not\supseteq K_3$, G not bipartite, then $m \leq \frac{n^2}{4} - Cn$.

Exercise 4.5 (Turán's Theorem) (a) $ex(n, K_4) = |E(K_{a,b,c})| \sim \frac{n^2}{3}$ where a + b + c = n and $|\max\{a, b, c\} - \min\{a, b, c\}| \le 1$. (Hint: Use induction in steps of 3.)

- (b) In fact, this is the only extremal graph.
- (c) Generalize (a) and (b) to any number r instead of 4. State and prove Turán's Theorem for $ex(n, K_r)$.

Exercise 4.6
$$\frac{\operatorname{ex}(n, C_4)}{n} \longrightarrow \infty$$

Theorem 4.7 (Kővári, Sós, Turán) $ex(n, C_4) < \frac{1}{2}(n^{3/2} + n)$.

Exercise 4.8 (Inequality between the arithmetic and the quadratic mean) For real numbers x_1, x_2, \ldots, x_n we have

$$\sqrt{\frac{x_1^2 + \dots + x_n^2}{n}} \ge \frac{x_1 + \dots + x_n}{n}.\tag{1}$$

The left-hand side is the quadratic mean, the right-side is the arithmetic mean.

Proof Idea: Consider a graph G on n vertices. Let N= number of paths of length 2 in G. Counting this quantity in two different ways and comparing the result is the key to the solution. Since G doesn't have 4-cycle, no two vertices have more than one common neighbour, each path of length 2 is uniquely determined by its endpoints. Therefore, $N \leq \binom{n}{2}$. On the other hand, counting the paths of length 2 by their middle points, $N = \sum_{y \in V} \binom{\deg(y)}{2}$. Since $\sum_{y \in V} \deg(y) = 2m$ ("Handshake Theorem") and by the inequality between the quadratic and the arithmetic mean, $\sum_{y \in V} \frac{(\deg(y))^2}{n} \geq \left(\frac{\sum_{y \in V} \deg(y)}{n}\right)^2 = \left(\frac{2m}{n}\right)^2$, we have

$$\binom{n}{2} \ge \frac{1}{2} (\frac{(2m)^2}{n} - 2m). \tag{2}$$

Refer to Matoušek-Nešetřil, Section 6.3, for the exact evaluation of inequality (2). Here is how we evaluate it asymptotically. We may assume n = o(m); therefore $2m = o(\frac{(2m)^2}{n})$ and the right hand side is $\sim \frac{(2m)^2}{n}$. The left hand side is $\sim n^2$. So $\frac{n^2}{2} \gtrsim \frac{(2m)^2}{n}$; therefore $m^2 \lesssim \frac{n^3}{4}$ and $m \lesssim \frac{n^{3/2}}{2}$.