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Extremal Graph Theory

Question: What is the maximum number of edges of a graph with n vertices without K3?

Notation: Let ex(n, K3) denote the maximum number of edges of a graph with n vertices
without K3. In general, let ex(n, U) denote the maximum number of edges of a graph with
n vertices without having a subgraph isomorphic to U . An extremal graph is one which has
the optimum number of edges under the given constraint.
A complete biparite graph with parts of size a and b has n = a+ b vertices and m = ab edges.
It is denoted by Ka,b. (Cf. Graphs and Digraphs handout.)

Observations: (a) The 5-cycle demonstrates that ex(5, K3) ≥ 5.
(b) K2,3 demonstrates that ex(5, K3) ≥ 6.

Theorem 4.1 (Mandel-Turán Theorem) (a) ex(n,K3) = bn2

4
c and

(b) the only extremal graph is Kbn
2
c,dn

2
e.

Proof Idea: Induction on n in steps of 2.
Base cases: n = 1, n = 2.
Now suppose n ≥ 3.
Inductive Hypothesis: Assume that the result is true with n− 2 in place of n.
Inductive step: Let G be a graph on n vertices. If G doesn’t have any edges then we are done.
Otherwise, pick an edge (u, v). Consider G

′
= G\{u, v} (we delete the vertices u, v and all

edges incident with them). G′ has n − 2 vertices. Therefore, by the Inductive Hypothesis,

m
′
= E(G

′
) ≤ (n−2)2

4
.

Since G doesn’t have a triangle, u and v don’t have any common neighbors. So there are at
most n− 2 edges from {u, v} to V (G′).
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Therefore, m = |E(G)| ≤ 1 + (n− 2) + m
′

≤ 1 + (n− 2) + (n−2)2

4
= n2

4
.

Exercise 4.2 Show that Kbn
2
c,dn

2
e is the only extremal graph.

Exercise 4.3 Disprove: ∃n0 , ε > 0 such that ∀n ≥ n0 if G + K3 , G not bipartite, then

m ≤ n2

4
(1− ε).

Exercise 4.4 (*) Prove: ∃n0 , C > 0 such that ∀n ≥ n0 if G + K3 , G not bipartite, then

m ≤ n2

4
− Cn.

Exercise 4.5 (Turán’s Theorem) (a) ex(n, K4) = |E(Ka,b,c)| ∼ n2

3
where a + b + c = n

and |max{a, b, c} −min{a, b, c}| ≤ 1. (Hint: Use induction in steps of 3.)
(b) In fact, this is the only extremal graph.
(c) Generalize (a) and (b) to any number r instead of 4. State and prove Turán’s Theorem
for ex(n,Kr).

Exercise 4.6
ex(n,C4)

n
−→∞

Theorem 4.7 (Kővári, Sós, Turán) ex(n, C4) < 1
2
(n3/2 + n).

Exercise 4.8 (Inequality between the arithmetic and the quadratic mean) For real
numbers x1, x2, . . . , xn we have√

x1
2 + · · ·+ xn

2

n
≥ x1 + · · ·+ xn

n
. (1)

The left-hand side is the quadratic mean, the right-side is the arithmetic mean.

Proof Idea: Consider a graph G on n vertices. Let N = number of paths of lenght 2 in
G. Counting this quantity in two different ways and comparing the result is the key to the
solution. Since G doesn’t have 4-cycle, no two vertices have more than one common neigh-
bour, each path of lenght 2 is uniquely determined by its endpoints. Therefore, N ≤

(
n
2

)
.

On the other hand, counting the paths of length 2 by their middle points, N =
∑

y∈V

(
deg(y)

2

)
.

Since
∑

y∈V deg(y) = 2m (“Handshake Theorem”) and by the inequality between the quadratic

and the arithmetic mean,
∑

y∈V
(deg(y))2

n
≥

(∑
y∈V deg(y)

n

)2

=
(

2m
n

)2
, we have(

n

2

)
≥ 1

2
(
(2m)2

n
− 2m). (2)
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Refer to Matoušek-Nešetřil, Section 6.3, for the exact evaluation of inequality (2). Here is

how we evaluate it asymptotically. We may assume n = o(m); therefore 2m = o( (2m)2

n
) and

the right hand side is ∼ (2m)2

n
. The left hand side is ∼ n2. So n2

2
& (2m)2

n
; therefore m2 . n3

4

and m . n3/2

2
. 2


