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Lecturer: László Babai Scribe: Raghav Kulkarni

TA SCHEDULE: TA sessions are held in Ryerson-255, Tuesday and Thursday 5:30–6:30pm.
INSTRUCTOR’S EMAIL: laci(AT)cs(dot)uchicago(dot)edu
TA’s EMAIL: hari(AT)cs(dot)uchicago(dot)edu, raghav(AT)cs(dot)uchicago(dot)edu

Estimating Ramsey numbers: the Probabilistic Method

Definition: r(2)(N) := max{t : N−→(t, t)}.
That is, N−→((r(2)(N), r(2)(N)) and N 6−→(1 + r(2)(N), 1 + r(2)(N)).

Theorem 3.1 N−→(1
2
log2 N, 1

2
log2 N). In other words, r(2)(N) ≥ 1

2
log2 N.

Proof Idea Follow the lines of the proof of Ramsey’s Theorem for graphs (infinite version).
We start with a vertex v1. At least half of the remaining vertices will be joined to v1 by an
edge of the same color. We pick v2 from these. Having chosen v1, v2, . . . , vk we are left with
N/2k vertices such that (∀i) all edges from vi to vj (j > i) have the same color. We stop
when k = log2 N For at least half of them, the “right-going color” is the same. This induces
the required monochromatic clique. 2

Theorem 3.2 N 6−→(1 +
√

N, 1 +
√

N). In other words, r(2)(N) ≤
√

N.

Proof Idea Consider the disjoint union of
√

N cliques of size
√

N . This is a subgraph of
KN . Color all edges in this subgraph red and all the edges in the complement blue. This
coloring will not have a clique of size 1 +

√
N of either color. 2

Theorem 3.2 turns out to be a very weak result. Indeed, Paul Erdős proved the following,
much stronger bound:

Theorem 3.3 (Erdős 1950) N 6−→(1 + 2 log2 N, 1 + 2 log2 N). In other words,

r(2)(N) ≤ d2 log2 Ne. (1)
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Corollary 3.4 r(2)(N) = Θ(log N).

To prove Theorem 3.3, Erdős gave a non-constructive proof of existence of a 2-coloring of
KN without homogeneous subsets (subsets which induce a monochromatic clique) of size
1+2 log2 N . This paper inaugurated his celebrated “Probabilistic Method,” one of the most
powerful techniques in combinatorics. Consider a random 2-coloring of E(KN). We prove
that for k ≥ 1 + 2 log2 N ,
P (∃homogeneous clique of size k)−→0 as N−→∞. Note that it would suffice to show that
the probability is less than 1.
Idea of proof: We have |V | = N . Consider A ⊆ V such that |A| = k.

P (A is homogeneous) = 21−(k
2). (2)

So, by the union bound,

P ((∃A ⊂ V )(|A| = k and A is homogeneous)) <

(
N

k

)
21−(k

2). (3)

Hence we proved an arithmetic condition for the Ramsey numbers:(
N

k

)
21−(k

2) ≤ 1 ⇒ N 6−→(k, k). (4)

Since
(

N
k

)
≤ Nk/k!, it suffices that we have

Nk/k!21−(k
2) ≤ 1 (5)

That is,

Nk21−(k
2) ≤ k!/2. (6)

It suffices, then, to have

Nk21−(k
2) ≤ 1 (7)(

N2−
k+1
2

)k

≤ 1 (8)

N2−
k+1
2 ≤ 1 (9)

which is equivalent to k ≥ 1 + 2 log2(N).
Note that, in fact what we proved is that for k ≥ 1 + 2 log2(N), we have

P ((∃A ⊂ V )(|A| = k and A is homogeneous)) < 2/k! (10)
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Big Open Problem: Observe the factor of 4 (asymptotic) gap between the lower and
upper bounds on r(2)(N) (1

2
log N versus 2 log N). Narrow the gap (reduce the number 4 to,

say, 3.9999.

Definition: log∗(N) := min{k : 22..
2

(k times) ≥ N}.
log∗ 2 = 1.
log∗ 3 = log∗ 4 = 2.
log∗ 5 = · · · = log∗ 16 = 3.
log∗ 17 = · · · = log∗ 65, 536 = 4.
log∗(65, 537) = · · · = log∗(265,536) = 5.
So, for all “reasonable” values of n, log∗ n ≤ 5. Yet limn→∞ log∗ n = ∞.

Exercise 3.5 (a) Show that proof given in class for r(3)(N) yields r(3)(N) ≥ C log∗(N)
where C is a constant. (b) Modify the proof to yield r(3)(N) ≥ C log log(N).

Exercise 3.6 (Probabilistic upper bound) Show that r(3)(N) ≤ C ′
√

log2 N where C ′ is
a constant.

Big Open Problem: Observe exponential gap between lower and upper bounds on r(3)(N)
(log log N versus

√
log N). Narrow the gap.


