CMSC 27400-1/37200-1 Combinatorics and Probability

Spring 2005

Lecture 11: April 22, 2005

Instructor: László Babai Scribe: Raghav Kulkarni

TA SCHEDULE: TA sessions are held in Ryerson-255, Monday, Tuesday and Thursday 5:30–6:30pm.

INSTRUCTOR'S EMAIL: laci@cs.uchicago.edu

TA's EMAIL: hari@cs.uchicago.edu, raghav@cs.uchicago.edu

IMPORTANT: Take-home test Friday, April 29, due Monday, May 2, before class.

Partially ordered sets, Zorn's lemma

Let $\mathcal{P} = (A, \leq)$ be poset. (The number of elements in A may be infinite.) Definitions:

- (i) $B \subseteq A$ is bounded if $(\exists a \in A)(\forall b \in B)(b \le a)$.
- (ii) $C \subseteq A$ is a chain if $(\forall x, y \in C)(x \le y \text{ or } y \le x)$.
- (iii) $a \in A$ is maximal if $(\exists x \in A)(a < x)$; here a < x means $a \le x$ and $a \ne x$.
- (iv) $a \in A$ is greatest if $(\forall x \in A)(x \leq a)$.

Observe that a greatest element is necessarily maximal but not conversely.

Exercise 11.1 Let $\mathcal{P} = (A, \leq)$ be a poset. True or false: (a) the empty set is a chain. (b) The empty set is bounded in \mathcal{P} .

Exercise 11.2 (a) Show that every nonempty finite poset has a maximal element.
(b) Show that a finite poset has a greatest element iff it has a unique maximal element.

Exercise 11.3 $\mathbb{N} = \{0, 1, ...\}$ (a) with respect to the natural ordering, has no maximal element; (b) with respect to divisibility, has a maximal elements. It also has a minimal element (define!).

In $(\mathbb{N}, <)$, 0 is the greatest and 1 is the smallest element.

Zorn's Lemma: In a poset, if every chain is bounded then \exists a maximal element. **Axiom of choice:** If $\{A_i\}_{i\in I}$ is a family of non-empty sets then \exists a function $f: I \longrightarrow \bigcup_{i\in I} A_i$ such that $(\forall i \in I)(f(i) \in A_i)$.

Zorn's lemma is equivalent to the Axiom of Choice, given the rest of the axioms of set theory.

Theorem 11.4 Let k be a positive integer. Then k-colorability of graphs is a finitary property, i. e., G is k-colorable iff every finite subgraph of G is k-colorable.

Proof: \Rightarrow is obvious.

 \Leftarrow Definition: G is finitely k-colorable if every finite subgraph of G is k-colorable. Let G = (V, E). Let \mathcal{G} be the set of all finitely k-colorable spanning supergraphs of G. (Recall: a spanning supergraph of G is a supergraph which has the same set of vertices as G; so a spanning supergraph is specified by specifying a superset of the edges of G.) $\mathcal{G} = \{H = (V, F) \mid F \subseteq E \text{ and } H \text{ is finitely } k\text{-colorable}\}$. Note that \mathcal{G} is non-empty.

Exercise 11.5 Prove: among all supergraphs of G on the vertex set V which are finitely k-colorable, there is a maximal one. (Hint: Zorn's lemma.)

Exercise 11.6 Let H be a maximal k-colorable finite graph, i. e., adding any edge to H destroys the k-colorability. Prove: H is complete k-partite, i. e., the complement of the disjoint union of complete graphs.

(Note: A finite graphs is k-partite iff it is k-colorable.)

Now back to the proof of Theorem 11.4. Let G_0 be a maximal finitely k-colorable supergraph of G on the same vertex set V. It suffices to prove: **Claim:** G_0 is complete k-partite. **Subclaim:** The relation, $a \sim b$: "a = b or a is not adjacent to b in G_0 ," is an equivalence relation. (i. e., $\overline{G_0}$ is the disjoint union of the complete graphs.)

Proof of Subclaim: Consider three vertices a, b, c in G_0 . Suppose $\{a, c\}$ is an edge but $\{a, b\}$ and $\{b, c\}$ are not. Since G_0 is maximal finitely k-colorable, adding the edge $\{b, c\}$ to G_0 makes some finite subgraph H_1 of it not k-colorable. Similarly, adding $\{a, b\}$ makes some finite subgraph H_2 not k-colorable. Consider $H = H_1 \cup H_2$. Every k coloring of H must assign the same color to k and k (since k plus $\{a, b\}$ is not k-colorable) and also it must assign the same color to k and k (since k plus $\{a, b\}$ is not k-colorable). Therefore it will assign the same color to k and k and k contradiction, because k and k are adjacent and every finite subgraph of k is k-colorable.

Therefore, \overline{G}_0 is disjoint union of complete graphs. (Why?)

Therefore, G_0 is a complete ℓ -partite for some (finite or infinite ℓ). So G_0 contains K_{ℓ} ; therefore $\ell \leq k$. (Why?)

Corollary 11.7 Borsuk's Theorem implies $(\forall k, \ell)(\exists \ a \ finite \ graph \ G \ with \ odd-girth(G) \ge \ell$ and G is not k-colorable).

Exercise 11.8 Prove the same using Kneser's Conjecture (Lovász's Theorem).