
Proofread notes 4-24-2005

CMSC 27400-1/37200-1 Combinatorics and Probability Spring 2005

Lecture 11: April 22, 2005
Instructor: László Babai Scribe: Raghav Kulkarni

TA SCHEDULE: TA sessions are held in Ryerson-255, Monday, Tuesday and Thursday
5:30–6:30pm.
INSTRUCTOR’S EMAIL: laci@cs.uchicago.edu
TA’s EMAIL: hari@cs.uchicago.edu, raghav@cs.uchicago.edu
IMPORTANT: Take-home test Friday, April 29, due Monday, May 2, before class.

Partially ordered sets, Zorn’s lemma

Let P = (A,≤) be poset. (The number of elements in A may be infinite.)
Definitions:
(i) B ⊆ A is bounded if (∃a ∈ A)(∀b ∈ B)(b ≤ a).
(ii) C ⊆ A is a chain if (∀x, y ∈ C)(x ≤ y or y ≤ x).
(iii) a ∈ A is maximal if (6 ∃x ∈ A)(a < x); here a < x means a ≤ x and a 6= x.
(iv) a ∈ A is greatest if (∀x ∈ A)(x ≤ a).

Observe that a greatest element is necessarily maximal but not conversely.

Exercise 11.1 Let P = (A,≤) be a poset. True or false: (a) the empty set is a chain. (b)
The empty set is bounded in P.

Exercise 11.2 (a) Show that every nonempty finite poset has a maximal element.
(b) Show that a finite poset has a greatest element iff it has a unique maximal element.

Exercise 11.3 N = {0, 1, . . . } (a) with respect to the natural ordering, has no maximal
element; (b) with respect to divisibility, has a maximal elements. It also has a minimal
element (define!).

In (N,≤), 0 is the greatest and 1 is the smallest element.

Zorn’s Lemma: In a poset, if every chain is bounded then ∃ a maximal element.
Axiom of choice: If {Ai}i∈I is a family of non-empty sets then ∃ a function
f : I−→

⋃
i∈I Ai such that (∀i ∈ I)(f(i) ∈ Ai).

Zorn’s lemma is equivalent to the Axiom of Choice, given the rest of the axioms of set theory.
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Theorem 11.4 Let k be a positive integer. Then k-colorability of graphs is a finitary prop-
erty, i. e., G is k-colorable iff every finite subgraph of G is k-colorable.

Proof: ⇒ is obvious.
⇐ Definition: G is finitely k-colorable if every finite subgraph of G is k-colorable.
Let G = (V, E). Let G be the set of all finitely k-colorable spanning supergraphs of G.
(Recall: a spanning supergraph of G is a supergraph which has the same set of vertices as
G; so a spanning supergraph is specified by specifying a superset of the edges of G.)
G = {H = (V, F ) | F ⊆ E and H is finitely k-colorable}. Note that G is non-empty.

Exercise 11.5 Prove: among all supergraphs of G on the vertex set V which are finitely
k-colorable, there is a maximal one. (Hint: Zorn’s lemma.)

Exercise 11.6 Let H be a maximal k-colorable finite graph, i. e., adding any edge to H
destroys the k-colorability. Prove: H is complete k-partite, i. e., the complement of the
disjoint union of complete graphs.

(Note: A finite graphs is k-partite iff it is k-colorable.)

Now back to the proof of Theorem 11.4. Let G0 be a maximal finitely k-colorable supergraph
of G on the same vertex set V . It suffices to prove: Claim: G0 is complete k-partite.
Subclaim: The relation, a ∼ b : “a = b or a is not adjacent to b in G0,” is an equivalence
relation. (i. e., G0 is the disjoint union of the complete graphs.)

Proof of Subclaim: Consider three vertices a, b, c in G0. Suppose {a, c} is an edge but
{a, b} and {b, c} are not. Since G0 is maximal finitely k-colorable, adding the edge {b, c} to
G0 makes some finite subgraph H1 of it not k-colorable. Similarly, adding {a, b} makes some
finite subgraph H2 not k-colorable. Consider H = H1 ∪ H2. Every k coloring of H must
assign the same color to a and b (since H1 plus {a, b} is not k-colorable) and also it must
assign the same color to b and c (since H2 plus {b, c} is not k-colorable). Therefore it will
assign the same color to a and c, a contradiction, because a and c are adjacent and every
finite subgraph of G0 is k-colorable. 2

Therefore, G0 is disjoint union of complete graphs. (Why?)

Therefore, G0 is a complete `-partite for some (finite or infinite `). So G0 contains K`;
therefore ` ≤ k. (Why?) 2

Corollary 11.7 Borsuk’s Theorem implies (∀k, `)(∃ a finite graph G with odd-girth(G) ≥ `
and G is not k-colorable).

Exercise 11.8 Prove the same using Kneser’s Conjecture (Lovász’s Theorem).


