CMSC 27400-1/37200-1 Combinatorics and Probability

Spring 2005

Lecture 8: April 15, 2005

Instructor: László Babai Scribe: Raghav Kulkarni

TA SCHEDULE: TA sessions are held in Ryerson-255, Monday, Tuesday and Thursday

5:30-6:30pm.

INSTRUCTOR'S EMAIL: laci@cs.uchicago.edu

TA's EMAIL: hari@cs.uchicago.edu, raghav@cs.uchicago.edu

Chromatic number, degree, and independence number of graphs

Exercise 8.1 If G is a graph with the maximum degree \deg_{\max} then $\chi(G) \leq 1 + \deg_{\max}$.

Exercise 8.2 (a) If G is a directed graph such that the outdegree of every vertex in G is $\leq k$ and G has no loops then $\chi(G) \leq 2k + 1$. (A loop is an edge (x, x).) (b) This bound is tight for all values of k.

Definition: A graph G is planar if there exists a plane drawing of G without intersection of edges. Examples: K_4 , $K_{3,2}$ are planar. K_5 , $K_{3,3}$ are not planar.

READING HOMEWORK: Study planar graphs from a Discrete Maths text (such as Rosen.)

Exercise 8.3 If G is a planar graph then $\chi(G) \leq 6$. (Hint: Use the fact that for any planar graph, the minimum degree $\deg_{\min} \leq 5$.)

Exercise 8.4 If G is triangle-free then $\chi(G) = O(\sqrt{n})$.

Exercise 8.5 (Erdős) If \mathcal{H} is a k-uniform hypergraph $(k \geq 2)$ and the number of edges in \mathcal{H} is $m \leq 2^{k-1}$ then $\chi(\mathcal{H}) \leq 2$. (Hint: Probabilistic Method.)

Let m(k) = minimum number of edges of a 3-chromatic k-uniform hypergraph. Note that the previous exercise implies that $m(k) > 2^{k-1}$.

Exercise 8.6 *(Erdős) Show that $m(k) < ck^2 2^k$. (Hint: Probabilistic Method.)

Definition: The independence number of a graph G, $\alpha(G) :=$ the maximum size of an independent set in G.

Examples: $\alpha(K_n) = 1$; $\alpha(\overline{K}_n) = n$; $\alpha(C_n) = \lfloor \frac{n}{2} \rfloor$ (C_n denotes the *n*-cycle).

Exercise 8.7 Prove: for every graph G, $\alpha(G)\chi(G) \geq n$.

Let Queen-graph be the graph of queens on a chessboard defined as follows. For every cell A on the chessboard we have a vertex $v_A \in V(Queen-graph)$. So, there are 64 vertices. $v_A \sim v_B$ iff a queen on cell A threatens cell B.

Exercise 8.8 Show that $\alpha(Queen\text{-}graph) = 8$.

Exercise 8.9 (a) Define the Rook-graph.

- (b) Show that $\alpha(\text{Rook-graph}) = 8$.
- (c) Count the number of ways one can put 8 rooks on the chessboard so that no two threaten each other (i.e., count the maximum independent sets in the Rook-graph).

Consider a 5×5 toroidal chessboard. Here, a king can move from the rightmost square in a row to the leftmost square in the row or its two vertical neighbours and vice versa. Also, a king can move from the topmost square in a column to the bottom square in the column or its two horizontal neighbours and vice versa. Also, a king can move from a corner to the opposite corner.

Exercise 8.10 What is the maximum number of kings we can accommodate on the 5×5 toroidal chessboard such that no two kings threaten each other (i.e., they are not adjacent horizontally, vertically or diagonally)?

Exercise 8.11 (Open) For an n-dimensional $7 \times 7 \times \cdots \times 7$ toroidal chessboard, what is $\alpha(\text{King-graph})$?

Let $\alpha_n = \alpha(King\text{-}graph)$ for the *n*-dimensional $7 \times 7 \times \cdots \times 7$ toroidal chessboard. Here, the number of vertices in the King-graph is 7^n . Each vertex can be represented as (x_1, \ldots, x_n) where each $x_i \in \mathcal{F}_7$ (integers modulo 7). The king's move is to change each coordinate by at most 1 and at least one coordinate should be changed. So, degree of each vertex becomes $3^n - 1$.

Exercise 8.12 Prove that $\lim_{n\to\infty} \alpha_n^{1/n}$ exists. (Hint. Use Exercise 8.13 below.)

This limit is called Shannon Capacity of C_7 . OPEN: Its value is not known.

Exercise 8.13 Suppose $a_n > 0$ for all n and $a_{k+\ell} \ge a_k a_\ell$ for all k and ℓ . Prove: $(a) L := \lim_{n \to \infty} a_n^{1/n}$ exists. (The limit may be finite or infinite.) (b) For all n, $L \ge a_n^{1/n}$.

Exercise 8.14 Define the "strong product" $G \cdot H$ of graphs G and H in such a way that a product of cycles should be a toroidal King-graph. Prove: $\alpha(G \cdot H) \geq \alpha(G)\alpha(H)$.

Define the Shannon capacity of the graph graph G as $\Theta(G) = \lim_{n \to \infty} (\alpha(G^n))^{1/n}$.

Exercise 8.15 Prove that this limit always exists.

Exercise 8.16 Prove: $\sqrt{5} \le \Theta(C_5) \le 5/2$.

Exercise 8.17 Prove: if the graph G is self-complementary (isomorphic to its complement) then $\Theta(G) \geq \sqrt{n}$ where n is the number of vertices.

Theorem 8.18 (Lovász) $\Theta(C_5) = \sqrt{5}$.