CMSC 27400-1/37200-1 Combinatorics and Probability

Spring 2005

Lecture 6: April 08, 2005

Lecturer: László Babai Scribe: Raghav Kulkarni

TA SCHEDULE: TA sessions are held in Ryerson-255, Monday, Tuesday and Thursday 5:30–6:30pm.

INSTRUCTOR'S EMAIL: laci@cs.uchicago.edu

TA's EMAIL: hari@cs.uchicago.edu, raghav@cs.uchicago.edu

Please check the course website for corrections/announcements

Chromatic number of a hypergraph

Notation: Let $\mathcal{H} = (V, E)$ be a hypergraph where $E \subseteq 2^V := \{\text{subsets of } V\}.$

A legal coloring of \mathcal{H} is a function $f: V \longrightarrow C$ (C is a set of colors), such that no edge is monochromatic, i. e., $(\forall e \in E)(|f(e)| \geq 2)$. For a legal coloring to exist it is necessary and sufficient that $(\forall e \in E)(|e| \geq 2)$.

Definition: A hypergraph \mathcal{H} is k-colorable if \exists a legal coloring of \mathcal{H} using $\leq k$ colors.

Definition: The chromatic number of \mathcal{H} is $\chi(\mathcal{H}) := \min\{k | \mathcal{H} \text{ is } k\text{-colorable}\}.$

Examples: (a) $\chi(K_n) = n$. (b) For $r \geq 2$, $\chi(K_n^{(r)}) = \lceil \frac{n}{r-1} \rceil$. (Why?)

Definition: Kneser's Graph is a graph denoted by K(t,r) where $V = {[t] \choose r}$ (the set of all r-subsets of $[t] := \{1, \ldots, t\}$) and $A \sim B$ (meaning A is adjacent to B) if and only if $A \cap B = \emptyset$. Note that a Kneser's Graph is interesting only when $t \geq 2r + 1$. If t < 2r then K(t,r) is the empty graph, i. e., it has no edges. If t = 2r then K(t,r) is a perfect matching, i. e., a 1-regular graph, i. e., a graph in which the degree of every vertex is exactly 1.

Exercise 6.1 K(5,2) is the Petersen Graph. (See two drawings in the "Graphs and Digraphs" handout.)

Theorem 6.2 (Lovász, 1975) $\chi(K(t,r)) = t - 2r + 2$. (This was open for 50 years under the name "Kneser's Conjecture".)

Proof of the upper bound $\chi(K(t,r)) = t - 2r + 2$. $[t] = \{1, \ldots, t\}$. Color all the r-subsets of [t] containing 1 using color 1. Color all r-subsets of [t] containing 2 but not containing 1 by color 2. Continue the same way until you have exhausted t - 2r + 1 colors. At this point, all the remaining (uncolored) r-subsets are subsets of teh remaining 2r - 1 elements of [t] and therefore they form an independent set in Kneser's graph. So we can use just one more color to color all remaining vertices. Therefore, Kneser's graph is colorable using t - 2r + 2 colors.

Definition: The *n*-sphere $\mathbb{S}^n \subseteq \mathbb{R}^{n+1}$ is defined as $\mathbb{S}^n = \{\underline{x} \in \mathbb{R}^{n+1} : ||x|| = 1\}$. Definition: For $\underline{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, the Euclidean norm ||x|| is defined as $||x|| := \sqrt{\underline{x} \cdot \underline{x}} = \sqrt{\sum_{i=1}^n x_i^2}$. The distance of \underline{x} and $\underline{y} \in \mathbb{R}^n$ is ||x - y||.

Exercise 6.3 If $\mathbb{S}^1 = R \cup B$ then $(\forall \epsilon)(\exists x, y \in R \text{ or } x, y \in B \text{ such that } ||x - y|| > 2 - \epsilon)$

Definition: Given $A \subseteq \mathbb{R}^{n+1}$, the diameter of A is defined as diam $(A) := \sup_{x,y \in A} \{||x-y||\}$. Question (Borsuk, 1934): What is the minimum number of parts into which \mathbb{S}^n must be divided such that each part has diameter < 2?

Exercise 6.4 For \mathbb{S}^n , n+2 parts suffice.

Theorem 6.5 (Borsuk's Theorem) The minimum number of parts is n + 2, i. e., if $\mathbb{S}^n = A_0 \cup \cdots \cup A_n$ $(n + 1 \ parts)$ then $(\exists i)(\operatorname{diam}(A_i) = 2)$.

Theorem 6.6 (Borsuk's Lemma) Let $f: \mathbb{S}^n \longrightarrow \mathbb{R}^n$ be a continuous function, then $(\exists x \in \mathbb{S}^n)(f(x) = f(-x)).$

Exercise 6.7 Prove that Borsuk's Lemma implies Borsuk's Theorem.

Exercise 6.8 (****) Prove that Borsuk's Theorem implies Kneser's Conjecture (Theorem 6.1).

Definition: The girth of a graph is the length of the shortest cycle in it.

(The girth of a forest is infinite.)

Definition: The odd-girth of a graph is the length of the shortest odd cycle in it. (The odd-girth of a bipartite graph is infinite.)

Exercise 6.9 Using Kneser's Conjecture (Theorem 6.1), prove that $(\forall k, \ell)(\exists \ a \ graph \ with \ odd\text{-}girth > k \ and \ \chi > \ell)$.

Exercise 6.10 Construct a 4-chromatic graph on 11 vertices with no triangle. (Hint: 5-fold symmetry)