CMSC 27400-1/37200-1 Combinatorics and Probability

Spring 2005

Lecture 3: April 1, 2005

Lecturer: László Babai Scribe: Raghav Kulkarni

TA SCHEDULE: TA sessions are held in Ryerson-255, Tuesday and Thursday 5:30–6:30pm. INSTRUCTOR'S EMAIL: laci(AT)cs(dot)uchicago(dot)edu

TA's EMAIL: hari(AT)cs(dot)uchicago(dot)edu, raghav(AT)cs(dot)uchicago(dot)edu

Estimating Ramsey numbers: the Probabilistic Method

Definition:
$$r^{(2)}(N) := \max\{t : N \longrightarrow (t, t)\}.$$

That is, $N \longrightarrow ((r^{(2)}(N), r^{(2)}(N)) \text{ and } N \not\longrightarrow (1 + r^{(2)}(N), 1 + r^{(2)}(N)).$

Theorem 3.1 $N \longrightarrow (\frac{1}{2} \log_2 N, \frac{1}{2} \log_2 N)$. In other words, $r^{(2)}(N) \ge \frac{1}{2} \log_2 N$.

Proof Idea Follow the lines of the proof of Ramsey's Theorem for graphs (infinite version). We start with a vertex v_1 . At least half of the remaining vertices will be joined to v_1 by an edge of the same color. We pick v_2 from these. Having chosen v_1, v_2, \ldots, v_k we are left with $N/2^k$ vertices such that $(\forall i)$ all edges from v_i to v_j (j > i) have the same color. We stop when $k = \log_2 N$ For at least half of them, the "right-going color" is the same. This induces the required monochromatic clique.

Theorem 3.2
$$N \not\longrightarrow (1 + \sqrt{N}, 1 + \sqrt{N})$$
. In other words, $r^{(2)}(N) \leq \sqrt{N}$.

Proof Idea Consider the disjoint union of \sqrt{N} cliques of size \sqrt{N} . This is a subgraph of K_N . Color all edges in this subgraph red and all the edges in the complement blue. This coloring will not have a clique of size $1 + \sqrt{N}$ of either color.

Theorem 3.2 turns out to be a very weak result. Indeed, Paul Erdős proved the following, much stronger bound:

Theorem 3.3 (Erdős 1950)
$$N \not\longrightarrow (1 + 2\log_2 N, 1 + 2\log_2 N)$$
. In other words, $r^{(2)}(N) \le \lceil 2\log_2 N \rceil$. (1)

Corollary 3.4 $r^{(2)}(N) = \Theta(\log N)$.

To prove Theorem 3.3, Erdős gave a non-constructive proof of existence of a 2-coloring of K_N without homogeneous subsets (subsets which induce a monochromatic clique) of size $1+2\log_2 N$. This paper inaugurated his celebrated "Probabilistic Method," one of the most powerful techniques in combinatorics. Consider a random 2-coloring of $E(K_N)$. We prove that for $k \geq 1 + 2\log_2 N$,

 $P(\exists \text{homogeneous clique of size } k) \longrightarrow 0 \text{ as } N \longrightarrow \infty.$ Note that it would suffice to show that the probability is less than 1.

Idea of proof: We have |V| = N. Consider $A \subseteq V$ such that |A| = k.

$$P(A \text{ is homogeneous}) = 2^{1 - \binom{k}{2}}. \tag{2}$$

So, by the union bound,

$$P((\exists A \subset V)(|A| = k \text{ and } A \text{ is homogeneous})) < \binom{N}{k} 2^{1 - \binom{k}{2}}.$$
 (3)

Hence we proved an arithmetic condition for the Ramsey numbers:

$$\binom{N}{k} 2^{1 - \binom{k}{2}} \le 1 \Rightarrow N \not\longrightarrow (k, k). \tag{4}$$

Since $\binom{N}{k} \leq N^k/k!$, it suffices that we have

$$N^k/k!2^{1-\binom{k}{2}} \le 1 \tag{5}$$

That is,

$$N^k 2^{1 - \binom{k}{2}} \le k!/2. \tag{6}$$

It suffices, then, to have

$$N^k 2^{1 - \binom{k}{2}} \le 1 \tag{7}$$

$$\left(N2^{-\frac{k+1}{2}}\right)^k \le 1\tag{8}$$

$$N2^{-\frac{k+1}{2}} \le 1\tag{9}$$

which is equivalent to $k \ge 1 + 2\log_2(N)$.

Note that, in fact what we proved is that for $k \ge 1 + 2\log_2(N)$, we have

$$P((\exists A \subset V)(|A| = k \text{ and } A \text{ is homogeneous})) < 2/k!$$
 (10)

Big Open Problem: Observe the factor of 4 (asymptotic) gap between the lower and upper bounds on $r^{(2)}(N)$ ($\frac{1}{2} \log N$ versus $2 \log N$). Narrow the gap (reduce the number 4 to, say, 3.9999.

```
Definition: \log^*(N) := \min\{k : 2^{2^{\cdot^2}}(k \text{ times}) \ge N\}. \log^* 2 = 1. \log^* 3 = \log^* 4 = 2. \log^* 5 = \dots = \log^* 16 = 3. \log^* 17 = \dots = \log^* 65, 536 = 4. \log^*(65, 537) = \dots = \log^*(2^{65,536}) = 5. So, for all "reasonable" values of n, \log^* n \le 5. Yet \lim_{n \to \infty} \log^* n = \infty.
```

Exercise 3.5 (a) Show that proof given in class for $r^{(3)}(N)$ yields $r^{(3)}(N) \ge C \log^*(N)$ where C is a constant. (b) Modify the proof to yield $r^{(3)}(N) \ge C \log \log(N)$.

Exercise 3.6 (Probabilistic upper bound) Show that $r^{(3)}(N) \leq C' \sqrt{\log_2 N}$ where C' is a constant.

Big Open Problem: Observe exponential gap between lower and upper bounds on $r^{(3)}(N)$ (log log N versus $\sqrt{\log N}$). Narrow the gap.