CMSC 27400-1/37200-1 Combinatorics and Probability

Spring 2005

Lecture 2: March 30, 2005

Lecturer: László Babai Scribe: Raghav Kulkarni

TA SCHEDULE: TA sessions are held in Ryerson-255, Tuesday and Thursday 5:30-6:30pm.

INSTRUCTOR'S EMAIL: laci@cs.uchicago.edu

TA's EMAIL: hari@cs.uchicago.edu, raghav@cs.uchicago.edu

Ramsey Theory Continued

"∄ complete disorder"

Theorem 2.1 (Ramsey's theorem for graphs) $(\forall \ell_1, \ldots, \ell_k)(\exists R \text{ such that (if } n \geq R \text{ then } \forall \text{ partition of } E(K_n) = E_1 \dot{\cup} \ldots \dot{\cup} E_k)(\exists j)(\exists S \subseteq V(K_n))(|S| \geq \ell_j \text{ and } (\forall i_1 \neq i_2 \in S)(\{i_1, i_2\} \in E_j)$

Complete 3-uniform hypergraph

A hypergraph is a tuple (V, E) where V is set of vertices and E is set of edges. An edge is an arbitrary subset of V.

Notation: If S is a set and $k \ge 0$ is an integer then a k-subset of S is a subset of size k and $\binom{S}{k}$ is the set of all k-subsets of S.

In 3-uniform hypergraph, every edge is a 3-subset. i.e. $E \subseteq \binom{V}{3}$. Graphs are 2-uniform hypergraphs. The complete 3-uniform hypergraph is $K_n^{(3)} := (V, \binom{V}{3})$. It has $\binom{|V|}{3}$ edges.

Theorem 2.2 (Ramsey's Theorem for 3-uniform hypergraph) $(\forall \ell_1, \ldots, \ell_k)(\exists R)$ such that (if $n \geq R$) then $(\forall partition of E(K_n^{(3)}) = E_1 \dot{\cup} \ldots \dot{\cup} E_k)(\exists j)(\exists S \subseteq V(K_n^{(3)}))(|S| \geq \ell_j$ and $(\forall distinct i_1, i_2, i_3 \in S)(\{i_1, i_2, i_3\} \in E_j)$

Theorem 2.3 (Ramsey's Theorem) $(\forall r, \ell_1, \dots, \ell_k)(\exists R)$ such that (if $n \geq R$) then $(\forall partition of <math>E(K_n^{(r)}) = E_1 \dot{\cup} \dots \dot{\cup} E_k)(\exists j)(\exists S \subseteq V(K_n^{(r)}))(|S| \geq \ell_j \text{ and } \binom{S}{r} \subseteq E_j)$

Theorem 2.4 (Ramsey's Theorem: infinite version) $(\forall r)(\forall partition \ of \ E(K_{\infty}^{(r)}) = E_1 \dot{\cup} \dots \dot{\cup} E_k) \ (\exists j)(\exists infinite \ subset \ S \subseteq V(K_{\infty}^{(r)}))(\binom{S}{r} \subseteq E_j)$

If we prove the infinite version (Theorem 2.4) then the finite case (Theorem 2.3) follows by König path lemma. Theorem 2.2 is a special case of Theorem 2.3. Theorem 2.1 was proved in the previous lecture. We will prove Theorem 2.4. Theorem 2.2 and Theorem 2.3 will then follow.

Proof of Theorem 2.4 By induction on r. r = 2 case is Theorem 2.1.

Illustration of induction step for r=3: Consider $K_{\infty}^{(3)}$. Pick a vertex and call it v_1 . Now all the pairs in $\binom{V(K_{\infty}^{(3)})\setminus\{v_1\}}{2}$ will get an induced coloring. The color of a pair $\{u,v\}$ will be the color of the triplet $\{v_1,u,v\}$. By induction hypothesis, $(\exists j_1)(\exists \text{ infinite set } S_1 \subseteq V\setminus\{v_1\})$ such that $(\forall T \in \binom{S_1}{2})(\{v_1\} \cup T \in E_j)$

Similarly, we can get j_2 and $S_2 \subseteq S_1 \setminus \{v_2\}$. Proceeding this way, we have j_{i+1} and $S_{i+1} \subseteq S_i \setminus \{v_i\}$ such that $(\forall T \in \binom{S_{i+1}}{2})(\{i+1\} \cup T \in E_{j_{i+1}})$

Therefore, (\exists infinite sequence of vertices $W = \{v_1, v_2, \dots\} \subseteq V$) and (\exists infinite sequence of colors j_1, j_2, \dots such that $(\forall i_1 < i_2 < i_3)(\{i_1, i_2, i_3\} \in E_{j_{i_1}})$ i.e. the color of a triple depends only on its smallest element. Now, choose the color which occurs infinitely often among j_1, j_2, \dots This will give you the required infinite subset.

Comment: Ramsey's theorem is a generalization of Pigeon Hole Principle (PHP). r=1 case is in fact the PHP! We could have taken that as our base case.

Ramsey numbers

The smallest value of $R(r, \ell_1, \dots, \ell_k)$ in Ramsey's Theorem for graphs (Theorem 2.1) is called the Ramsey number for $(r, \ell_1, \dots, \ell_k)$ and is denoted by $R^{(r)}(r, \ell_1, \dots, \ell_k)$. We omit (r) if r = 2. For example: R(3,3) = 6 means $6 \longrightarrow (3,3)$ and $5 \not\longrightarrow (3,3)$

Exercise 2.5 (a) $10 \longrightarrow (3,4)$ (b)* $9 \longrightarrow (3,4)$ (c) $8 \not\longrightarrow (3,4)$.

Exercise 2.6 (a) $17 \longrightarrow (3,3,3)$ (b) $16 \not\longrightarrow (3,3,3)$ (Hint: Use finite field GF(16))

These exercises show that R(3,3) = 6, R(3,4) = 9, and R(3,3,3) = 17.

Note. The previously posted version erroneously stated that R(3,4)=10.

Exercise 2.7 (Esther Klein (1932)) 5 points in the plane, no three on a line \Rightarrow 4 form a convex quadrilateral.

Klein-Erdős(Question) True / False ? $(\forall k)(\exists n)(\forall n \text{ points in the plane, no three on a line })(\exists \text{ convex } k\text{-gon among them})$

Exercise 2.8 (George Szekeres (1932)) "True." (Hint: use Ramsey's Theorem.)

Klein, Erdős, and Szekeres were undergraduates at the time. Szekeres, a chemistry major, unaware of Ramsey's Theorem, rediscovered it to prove the result. Erdős then improved the bound, Erdős and Szekeres wrote a joint paper about it (1934), and Szekeres married Klein, after which Erdős dubbed the result "The Happy Ending Theorem."