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Ramsey Theory Continued

“@ complete disorder”

Theorem 2.1 (Ramsey’s theorem for graphs) (∀`1, . . . , `k)(∃R such that (if n ≥ R
then ∀ partition of E(Kn) = E1∪̇ . . . ∪̇Ek)(∃j)(∃S ⊆ V (Kn))(|S| ≥ `j and (∀i1 6= i2 ∈
S)({i1, i2} ∈ Ej)

Complete 3-uniform hypergraph

A hypergraph is a tuple (V , E) where V is set of vertices and E is set of edges. An edge is
an arbitrary subset of V .

Notation: If S is a set and k ≥ 0 is an integer then a k-subset of S is a subset of size k and(
S
k

)
is the set of all k-subsets of S.

In 3-uniform hypergraph, every edge is a 3-subset. i.e. E ⊆
(
V
3

)
. Graphs are 2-uniform

hypergraphs. The complete 3-uniform hypergraph is K
(3)
n := (V ,

(
V
3

)
). It has

(|V |
3

)
edges.

Theorem 2.2 (Ramsey’s Theorem for 3-uniform hypergraph) (∀`1, . . . , `k)(∃R) such

that (if n ≥ R) then (∀ partition of E(K
(3)
n ) = E1∪̇ . . . ∪̇Ek)(∃j)(∃S ⊆ V (K

(3)
n ))(|S| ≥ `j

and (∀ distinct i1, i2, i3 ∈ S)({i1, i2, i3 } ∈ Ej)

Theorem 2.3 (Ramsey’s Theorem) (∀r, `1, . . . , `k)(∃R) such that (if n ≥ R) then (∀
partition of E(K

(r)
n ) = E1∪̇ . . . ∪̇Ek)(∃j)(∃S ⊆ V (K

(r)
n ))(|S| ≥ `j and

(
S
r

)
⊆ Ej)

Theorem 2.4 (Ramsey’s Theorem: infinite version) (∀r)(∀ partition of

E(K
(r)
∞ ) = E1∪̇ . . . ∪̇Ek) (∃j)(∃ infinite subset S ⊆ V (K

(r)
∞ ))(

(
S
r

)
⊆ Ej)

1
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If we prove the infinite version (Theorem 2.4) then the finite case (Theorem 2.3) follows by
König path lemma. Theorem 2.2 is a special case of Theorem 2.3. Theorem 2.1 was proved
in the previous lecture. We will prove Theorem 2.4. Theorem 2.2 and Theorem 2.3 will then
follow.

Proof of Theorem 2.4 By induction on r. r = 2 case is Theorem 2.1.

Illustration of induction step for r = 3: Consider K∞
(3). Pick a vertex and call it v1. Now

all the pairs in
(
V (K∞(3))\{v1}

2

)
will get an induced coloring. The color of a pair {u, v} will be

the color of the triplet {v1, u, v}. By induction hypothesis, (∃j1)(∃ infinite set S1 ⊆ V \{v1})
such that (∀T ∈

(
S1

2

)
)({v1} ∪ T ∈ Ej)

Similarly, we can get j2 and S2 ⊆ S1\{v2}. Proceeding this way, we have ji+1 and Si+1 ⊆
Si\{vi} such that (∀T ∈

(
Si+1

2

)
)({i+ 1} ∪ T ∈ Eji+1

)

Therefore, (∃ infinite sequence of vertices W = {v1, v2, . . . } ⊆ V ) and (∃ infinite sequence of
colors j1, j2, . . . such that (∀i1 < i2 < i3)({i1, i2, i3} ∈ Eji1 ) i.e. the color of a triple depends
only on its smallest element. Now, choose the color which occurs infinitely often among
j1, j2, . . . . This will give you the required infinite subset.

Comment: Ramsey’s theorem is a generalization of Pigeon Hole Principle (PHP). r = 1
case is in fact the PHP ! We could have taken that as our base case.

Ramsey numbers
The smallest value of R(r, `1, . . . , `k) in Ramsey’s Theorem for graphs (Theorem 2.1) is called
the Ramsey number for (r, `1, . . . , `k) and is denoted by R(r)(r, `1, . . . , `k). We omit (r) if
r = 2. For example: R(3, 3) = 6 means 6−→(3, 3) and 56−→(3, 3)

Exercise 2.5 (a) 10−→(3, 4) (b)∗ 9−→(3, 4) (c) 86−→(3, 4).

Exercise 2.6 (a) 17−→(3, 3, 3) (b) 166−→(3, 3, 3) (Hint: Use finite field GF (16))

These exercises show that R(3, 3) = 6, R(3, 4) = 9, and R(3, 3, 3) = 17.

Note. The previously posted version erroneously stated that R(3, 4) = 10.

Exercise 2.7 (Esther Klein (1932)) 5 points in the plane, no three on a line ⇒ 4 form
a convex quadrilateral.

Klein-Erdős(Question) True / False ? (∀k)(∃n)(∀n points in the plane, no three on a
line )(∃ convex k-gon among them)

Exercise 2.8 (George Szekeres (1932)) “True.” (Hint: use Ramsey’s Theorem.)

Klein, Erdős, and Szekeres were undergraduates at the time. Szekeres, a chemistry major,
unaware of Ramsey’s Theorem, rediscovered it to prove the result. Erdős then improved the
bound, Erdős and Szekeres wrote a joint paper about it (1934), and Szekeres married Klein,
after which Erdős dubbed the result “The Happy Ending Theorem.”


