
CMSC-37110 Discrete Mathematics
SOLUTIONS TO SECOND MIDTERM EXAM

November, 2005

Instructor: László Babai Ryerson 164 e-mail: laci@cs

This exam contributes 20% to your course grade.

1. (6 points) Let an, bn > 1. Prove that the condition an ∼ bn does NOT
imply an

n = Θ(bn
n). Before giving your counterexample, state clearly

what properties your counterexample needs to have, and prove that it
indeed has those properties.

Answer. We need to give an example of two sequences an, bn > 1 such
that an ∼ bn but all c and all sufficiently large n, either an

n > cbn
n or

bn
n > can

n.

Example: an = n1/n; bn = n2/n = a2
n. Now an → 1 because ln an =

ln n/n → 0; therefore bn/an = an → 1, so an ∼ bn. On the other hand,
bn
n/a

n
n = an

n = n is unbounded, therefore bn
n 6= O(an

n) and consequently
bn
n 6= Θ(an

n).

2. (4+4+6+3+6+4 points)

(a) Define the relation an = Ω(bn). Do not use the big-Oh notation.
Give a properly quantified formula, no English words.

Answer. (∃c > 0)(∃n0)(∀n ≥ n0)(|an| ≥ c|bn|).
(b) True or false? Fn+1 = O(Fn) (Fibonacci numbers). Give a simple

proof of your answer.

Answer. TRUE. We claim that Fn+1 ≤ 2Fn and therefore Fn+1 =
O(Fn).

Proof of the Claim. For n ≥ 0 we have Fn ≥ 0 (by induction).
Therefore, for n ≥ 2 we have Fn = Fn−1 + Fn−2 ≥ Fn−1. Conse-
quently, Fn+1 = Fn + Fn−1 ≤ 2Fn.

(c) Prove: if an = Θ(bn) and an →∞ then ln(an) ∼ ln(|bn|).

Answer. We know that (∃c > 0, C, n0) such that for all n ≥ n0

we have
can ≤ |bn| ≤ Can. (1)

Taking logarithms,

ln c + ln an ≤ ln |bn| ≤ ln C + ln an. (2)

Dividing by the positiv quantity an,

ln c

ln an

+ 1 ≤ ln |bn|
ln an

≤ ln C

ln an

. (3)
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By assumption, ln c
ln an

→ 0 and ln C
ln an

→ 0. Therefore the fraction
ln |bn|
ln an

is between two sequences both of which converge to 1. By
the “squeeze principle” (a.k.a. “sandwich principle”) the fraction
in the middle also approaches 1, i. e., ln(an) ∼ ln(|bn|).

(d) True or false: ln x = Θ(log2 x). Prove your answer.

Answer. TRUE. ln x = c log2 x where c = ln 2.

(e) True or false: π(x) = Ω(x0.9), where π(x) is the number of primes
≤ x.

Answer. TRUE. Equivalently, x0.9 = O(π(x)). In fact, the stronger
statement x0.9 = o(π(x)) is true. Reason:

x0.9

π(x)
∼ x0.9

x/ ln x
=

ln x

x0.1
→ 0. (4)

(f) Prove: ln(x5 + 5x2 − 100) = Θ(ln(4x9 − 5x2 + 1)).

Answer. Let f(x) be a polynomial of degree n ≥ 1 with positive
leading coefficient. Then, for all sufficiently large x,

√
x < f(x) < xn+1 (5)

(because
√

x = o(f(x)) and f(x) = o(xn+1)). Taking logarithms,

(1/2) ln x < ln f(x) < (n + 1) ln x (6)

hold for all sufficiently large x. Therefore ln(f(x)) = Θ(ln x). It follows
that for any two polynomials f1(x) and f2(x) of degrees ≥ 1 with posi-
tive leading coefficients, the logarithm of each polynomial is Θ(ln x) and
therefore, by the transitivity of the Θ relation, ln(f1(x)) and ln(f2(x))
are in Θ relation with each other.

3. (6+3B points) For the positive integer x, let n(x) denote the number of
decimal digits of x. (a) Prove: n(x) ∼ lg(x) where lg refers to base-10
logarithms. (b) BONUS: give a very simple explicit formula for n(x) in
terms of the lg function and the rounding (floor or ceiling) functions.

Answer. (a) The key observation is that 10n(x)−1 ≤ x < 10n(x). Taking
logarithms, it follows that

n(x)− 1 ≤ lg x < n(x). (7)

Dividing by n(x) we obtain

1− 1

n(x)
≤ lg x

n(x)
< 1. (8)
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Since 1/n(x) → 0, we obtain, as before by the Squeeze Principle, that
lg x/n(x) → 1, proving that n(x) ∼ lg x.

(b) The inequalities (7) are equivalent to saying that n(x)− 1 = blg xc
and therefore n(x) = 1 + blg xc. Another correct formula is: n(x) =
dlg(x + 1)e. (Why?)

4. (A:3+3, B:5+5B points) Give simple closed-form expressions of the (a)
ordinary generating function (b) exponential generating function of the
sequences (A) 1,−1, 1,−1, . . . and (B) 1, 0, 0, 1, 0, 0, 1, 0, 0, . . . . (bB) is
a bonus problem.

Answer. Observing that 1/(1 − z) =
∑∞

i=0 zi, and setting z = qx,
we obtain that for the geometric progression 1, q, q2, . . . , the (ordinary)
generating function is 1/(1−qx). From the Taylor series ez =

∑∞
i=0 zi/i!

we obtain, again by setting z = qx, that for the same geometric pro-
gression, the exponential generating function is eqx. Setting q = −1 we
obtain 1/(1 + x) for (Aa) and e−x for (Ab). Setting z = x3 in our first
formula we see that the answer to (Ba) is 1/(1− x3). – (Bb) is left as
a challenge problem.

5. (6 points) Give a simple closed-form expression for the ordinary gen-
erating function of the Fibonacci numbers (F0 = 0, F1 = 1, Fn =
Fn−1 + Fn−2). Show all your work.

Answer. (done in class)

6. (5 points) Pick a random integer from {1, 2, . . . , 101}. Let A be the
event that x is even; and B the event that 3 |x. Are the events A and
B positively correlated, negatively correlated, or independent?

Answer. b101/2c = 50; b101/3c = 33; b101/6c = 16; therefore P (A) =
50/101, P (B) = 33/101, P (A∩B) = 16/101 < (50/101) · (33/101) be-
cause 1616 = 16·101 < 50·33 = 1650. Therefore A and B are negatively
correlated.

7. (4+4 points) (a) Calculate the largest k such that 3k divides 83! (83-

factorial). (b) Calculate the largest ` such that 3` divides

(
83

21

)
. Do

NOT use calculator for this question; show all your work.

Answer. (a) Let kp(n) denote the exponent in the largest power of p
that divides n!. Then the question is k = k3(83).

k3(83) =

⌊
83

3

⌋
+

⌊
83

32

⌋
+

⌊
83

33

⌋
+

⌊
83

34

⌋
= 27 + 9 + 3 + 1 = 40. (9)

(b) The desired exponent is ` = k3(83) − k3(21) − k3(62) = (27 + 9 +
3 + 1)− (7 + 2)− (20 + 6 + 2) = 0 + 1 + 1 + 1 = 3.
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8. (6 points) Prove: (∀x)(x13 ≡ x (mod 65)).

Answer. 65 = 5 · 13 and 5 and 13 are relatively prime so it suffices
to prove the congruence modulo 5 and modulo 13 separately. (a) By
Fermat’s Little Theorem, if 13 - x then x12 ≡ 1 (mod 13) and therefore
x13 ≡ x (mod 13). But this last congruence also holds if 13 | x since
then both sides are ≡ 0 (mod 13). (b) If 5 - x then x4 ≡ 1 (mod 5);
therefore x12 = (x3)4 ≡ 14 = 1 (mod 5) and consequently x13 ≡ x
(mod 5). But the last congruence also holds when 5 | x because then
both sides are ≡ 0 (mod 13).

9. (4+2B points) (a) Let x > 0. Show that the largest term in the Taylor
series ex =

∑∞
n=0 xn/n! occurs when n = bxc. (b) (BONUS) Prove,

using the Taylor series of ex, that n! > (n/e)n. (Hint: find the largest
term of the expansion of en. Do not use Stirling’s formula.)

Answer. (a) Let an = xn/n! be the n-th term of the series. Consider
the quotient of two consecutive terms:

an

an−1

=
xn/n!

xn−1/(n− 1)!
=

x

n
. (10)

So as long as x ≥ n, we have an ≥ an−1; after that, an < an−1. So the
largest term occurs for the greatest n such that n ≤ x; this is n = bxc.
(b) nn/n! is one of the terms (in fact, the largest term) in the expansion
of en, therefore en > nn/n!. Rearranging the inequality we obtain
n! > (n/e)n.

10. (6 points) Decide whether or not the following system of congruences
is solvable. Prove your answer.

x ≡ 2 (mod 9)

x ≡ 8 (mod 21)

x ≡ 1 (mod 7)

Answer. (First solution) 7 | 21, so the second congruence implies the
third, therefore the third congruence is redundant: x satisfies all the
three congruences if and only if it satisfies the first two. The second
congruence is equivalent to the pair of congruences x ≡ 8 (mod 7) and
x ≡ 8 (mod 3), or equivalently, x ≡ 1 (mod 7) and x ≡ 2 (mod 3).
The last congruence follows from x ≡ 2 (mod 9) and therefore is re-
dundant. So the entire system is equivalent to the pair of congruences
x ≡ 2 (mod 9) and x ≡ 1 (mod 7). By the Chinese Remainder The-
orem, this system (and therefore the original system) has a unique
solution modulo 63.

(Second solution: by guessing) The positive solutions to the second
congruence are 8, 29, 50, . . . . Luckily we can observe that 29 satisfies
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all the three congruences; therefore a solution exists. It also follows
that the solution is unique modulo the l.c.m.(9, 21, 7) = 63.

11. (2+6+9 points) A careless secretary puts n distinct letters into n ad-
dressed envelopes at random. All addresses are different. Let X denote
the number of letters that happen to get in the right envelope. (a)
What is the size of the sample space of this experiment? (b) Deter-
mine E(X). If you use auxiliary random variables, define them clearly.
Half the credit goes for this definition. (c) Determine the probability
that X = 0 (none of the letters goes in the right envelope). Name the
method used. Prove that this probability approaches 1/e as n →∞.

Answer. (a) n! (b) Let Yi be the indicator variable of the event Ai that
letter #i got in the right envelope. Then X =

∑n
i=1 Yi and therefore

E(X) =
∑n

i=1 E(Yi). Now E(Yi) = P (Ai) = 1/n and therefore E(X) =∑n
i=1 1/n = n · (1/n) = 1.

12. (5B points) (BONUS) Prove that the Fibonacci sequence modulo m
is periodic and the period is not longer than m2 − 1. Example: the
Fibonacci sequence modulo 3 is 0, 1, 1, 2, 0, 2, 2, 1, repeat. The length
of the period is 8 = 32 − 1.

Answer. Remains a challenge problem.

13. (2+4+B5 points) Let V = {1, 2, . . . , n}, n ≥ 3. Let us consider a
random graph G on the vertex set V ; adjacency is decided by coin
flips. (a) What is the size of the sample space for this experiment?
(b) Let Ai denote the event that vertex i has even degree. What is the
probability of Ai?

Answer. (a) 2(n
2). (b) Let j be a vertex other than i. There is a 1-to-1

correspondence between those outcomes of the experiment where the
degree of i is even and those where the degree of i is odd: just flip the
coin deciding the adjacency of i and j. Therefore P (Ai) = 1/2.

(c) BONUS PROBLEM. What is the probability that all vertices of G
have even degree?

Answer. Remains a challenge problem.

14. (6 points) Find the multiplicative inverse of 62 modulo 91. Your answer
should be an integer between 1 and 90. Show all your work.

Answer. We follow the steps of Euclid’s algorithm, starting from the
conditions (a) 62x ≡ 1 (mod 91) and (b) 91x ≡ 0 (mod 91). Subtract-
ing (a) from (b), we obtain (c) 29x ≡ −1 (mod 91). Now we subtract
2(c) from (a) and obtain (d) 4x ≡ 3 (mod 91). Finally we subtract
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7(d) from (c) and obtain x ≡ −22 ≡ 69 (mod 91). So if there is a so-
lution, it can only be x ≡ 69 (mod 91). We also proved in the process
that gcd(62, 91) = 1 (we executed Euclid’s algorithm on the coefficient
of x), so a solution indeed must exist.

15. (5B points) (BONUS) Prove: gcd(2k − 1, 2` − 1) = 2d − 1, where d =
gcd k, `. (Hint: induction on k + `.)

Answer. If k = 0 then we have d = ` and gcd(0, 2` − 1) = 2` − 1 =
2d − 1. Similarly if ` = 0. Now we may assume k, ` ≥ 1 and assume
that the statement is true for k′, `′ if k′ + `′ < k + `. WLOG we may
assume k ≥ `.

We know that gcd(a, b) = gcd(a− b, b). Therefore gcd(2k − 1, 2`− 1) =
gcd(2k − 2`, 2` − 1) = gcd(2`(2k−` − 1), 2` − 1) = gcd(2k−` − 1, 2` − 1).
(We were able to omit the term 2k−` because 2` − 1 is odd.) We can
now use the inductive hypothesis, so the right-hand side is 2s−1 where
s = gcd(k − `, `) = gcd(k, `).

16. (4+6+6B points)

(a) Prove: there are infinitely many prime numbers. Give Euclid’s
proof.

Answer. Assume, for a contradition, that p1, . . . , pn is a complete
list of all primes. Consider the number N =

∏n
i=1 pi + 1. Then,

for every i we have N ≡ 1 (mod p)i. Let now p be a prime divisor
of N . Then N ≡ 0 (mod p). On the other hand, p must be one of
the pi (the list being complete), so we have N ≡ 1 (mod p) and
therefore 1 ≡ 0 (mod p), a contradiction.

(b) Prove: there are infinitely many prime numbers of the form 4k−1.
(Do not use Dirichlet’s theorem.)

Answer. Lemma. If N > 1 and N ≡ −1 (mod 4) then N has a
prime divisor of the form 4k − 1.

Proof. Let N = p1 . . . ps where the pi are (not necessarily distinct)
primes. N is odd, so each pi is odd. If all of them were ≡ 1
(mod 4) then so would be their product. So at least one of them
must be ≡ −1 (mod 4), proving the Lemma.

Proof of the result stated in the problem. Assume, for a contradic-
tion, that q1, . . . , qt is a complete list of all primes ≡ −1 (mod 4).
Consider the number N = 4

∏t
i=1 qi − 1. So for each i we have

N ≡ −1 (mod qi). Since N ≡ −1 (mod 4) and N > 1, it follows
by the Lemma that N has a prime divisor q such that q ≡ −1
(mod 4). So N ≡ 0 (mod q). On the other hand, q must be one
of the qi (the list being complete), so we have N ≡ −1 (mod q)
and therefore −1 ≡ 0 (mod q), a contradiction.
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(c) (BONUS) Prove: there are infinitely many prime numbers of the
form 4k +1. (Hint: use the fact that −1 is a quadratic nonresidue
modulo primes of the form 4k − 1.)

Answer. Reamins a challenge problem.

17. (6 points) Count the 5-cycles in the complete graph Kn. A 5-cycle is a
subgraph isomorphic to C5.

Answer. K5 has 4!/2 = 12 5-cycles: start at vertex 1, move to any one
of 4 places, then to any of 3 places, then to 2, and finally 1. This gives
41 choices; but we counted every cycle twice (we can traverse them in

two directions). So the total number of 5-cycles in Kn is 12

(
n

5

)
.

18. (5B points) (BONUS) Pick a random integer x between 1 and n. Let
r(x) denote the number of distinct prime divisors of x (so r(12) = 2).
Prove: E(r(x)) ∼ ln ln n.

Answer. Remains a challenge problem.
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