
RECURRENCES, GENERATING FUNCTIONS

Definition 1. The ordinary generating function of a sequence an is:

f(x) =
∞∑

n=0

anxn

Definition 2. The exponential generating function of a sequence an is:

f(x) =
∞∑

n=0

an
xn

n!

Generating functions are formal power series which form a ring under the natural addition
and multiplication rules. For ordinary generating functions we get:

∞∑
n=0

anxn +
∞∑

n=0

bnxn =
∞∑

n=0

(an + bn)xn

∞∑
n=0

anxn ·
∞∑

n=0

bnxn =
∞∑

n=0

dnxn

where dn =
∑n

i=0 aibn−i.
Similarly, we can add and multiply two exponential generating functions.

∞∑
n=0

an
xn

n!
+

∞∑
n=0

bn
xn

n!
=

∞∑
n=0

(an + bn)
xn

n!

∞∑
n=0

an
xn

n!
·
∞∑

n=0

bn
xn

n!
=

∞∑
n=0

dn
xn

n!

where dn =
∑n

i=0

(
n
i

)
aibn−i.

The last operation we will mention explicitly here is differentiation. For a generating func-
tion f(x) =

∑∞
n=0 anxn, the derivative is f ′(x) =

∑∞
n=0 nanxn−1. For two generating

functions f and g, usual laws of derivation hold:
• (f + g)′ = f ′ + g′

• (fg)′ = f ′g + fg′

• f(g(x))′ = g′f ′(g(x))
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2 RECURRENCES, GENERATING FUNCTIONS

0.1. Determining a generating function from a recurrence. Given a sequence an,
we want to determine a closed form for a generating function of an.

Example 1. Let an be the constant all ones sequence (1, 1, 1, . . .). Then the ordinary
generating function for an is

∑
n≥0 xn which we know to be 1

1−x .

Knowing certain basic relations such as in the last example will be very helpful in working
with generating functions. In particular we note the following:

1
(1 − ax)m

= 1 +
(

m

1

)
ax +

(
m + 1

2

)
a2x2 + . . . +

(
n + k − 1

k

)
akxk + . . .

Example 2. Let an be defined by a0 = a1 = 1, an = an−1 + an−2 for n ≥ 2.
In order to determine f(x) =

∑
n≥0 anxn, we start by expanding the first few terms of

f(x). Then we substitute in our recurrence on the coefficients. Finally we look for shifted
versions of our original generating function.

f(x) = 1 + x +
∑

n≥2 anxn

= 1 + x +
∑

n≥2(an−1 + an−2)xn

= 1 + x + x
∑

n≥2 an−1x
n−1 + x2

∑
n≥2 an−2x

n−2

= 1 + x + x(f(x) − 1) + x2f(x)
= 1

1−x−x2

0.2. Recover a recurrence from a generating function. Next we simply want to turn
around the goal from the last section. Given the closed form of a generating function for a
sequence, we would like to know the recurrence of the sequence.

If we are given the generating function as a rational function of polynomials, we use the
technique of “equating coefficients on both sides”.

Example 3. Suppose we have a sequence an whose ordinary generating function is:

f(x) =
1 − x

1 − 3x − x2 + x3

Let P (x) = 1 − x and Q(x) = 1 − 3x − x2 + x3. Then Q(x)f(x) = P (x). For n ≥ 3 we
equate coefficients on both sides of this equation.

f(x)(1 − 3x − x2 + x3) = 1 − x

The coefficient of xn for n ≥ 3 is 0 (as is easy to see from the right hand side). We must
consider how from the left hand side, we contribute to the coefficient of xn. We have the
following terms: (anxn)1, (an−1x

n−1)(−3x), (an−2x
n−2)(−x2), and (an−3x

n−3)(x3). These
terms must add to zero, therefore an−3an−1−an−2 +an−3 = 0, which gives a recurrence on
our sequence. The only thing left to determine is a0, a1, and a2. We can use the same method
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as above for each of these terms. The constant term on the right hand side is 1, hence the
constant term of f(x) must be 1. The coefficient of x is −1 hence (a0)(−3) + (a1)(1) = −1.
Since we already know a0 = 1, we can solve to find a1 = 2. Similarly we find a2 = 7.

0.3. Solving a recursion. Here we show an example of how to use a generating function
to solve a recursion. In particular, we are given a recursion but would like to have a
non-recursive formula for the sequence.

Example 4. Suppose we are given the sequence defined by the recursion: an = 3an−1. Let
f(x) be its ordinary generating function.

f(x) = a0 + a1x + a2x
2 + . . .

3xf(x) = a03x + a13x2 + a23x3 + . . .

3x − 3xf(x) = a0 + (a1 − 3a0)x + (a2 − 3a1)x2 + . . .

f(x) − 3xf(x) = a0

(The relation ai − 3ai−1 = 0 is exactly our recurrance)
f(x) = a0

1−3x

= a0(1 + 3x + 32x2 + 33x3 + . . .)
= a0 + 3a0x + 32a0x

2 + . . .

Hence an = 3na0.

0.4. Using generating functions in counting.

Example 5. Let tn be the number of spanning trees of K2,n, the complete bipartite graph
with |V1| = 2 and |V2| = n. We want to determine a formula for tn. First we set up
a recursion. Clearly, t1 = 1. For arbitrary n, consider one vertex of V2, say v. If this
vertex is connected to only one of the vertices in V1, then the number of spanning trees is
2tn−1. If v is connected to both vertices of V1, then the number of spanning trees is 2n−1

because no other vertex from V2 can be connected to both vertices of V1. Hence tn satisfies
tn = 2tn−1 + 2n−1 for n ≥ 2.

Now we solve our recursion.
Let t(x) be the ordinary generating function for tn.

t(x) = t0 + t1x + t2x
2 + . . .

2xt(x) = 2t0x + 2t1x
2 + 2t2x

3 + . . .

t(x) − 2xt(x) = t0 + (t1 − 2t0)x + (t2 − 2t1)x2 + . . .

t(x) − 2xt(x) = x + 2x2 + 22x3 + . . .

t(x) − 2xt(x) = x
1−2x

t(x) = x
(1−2x)2

t(x) = x(1 + 2(2)x + 3(22)x2 + . . .)
t(x) = n2n−1


