Discrete Mathematics – CMSC-37110-1 Homework 13 – November 22, 2005 Instructor: László Babai Ry-164 e-mail: laci[at]cs[dot]uchicago[dot]edu

HOMEWORK. Please print your name on each sheet. Please try to make your solutions readable. This homework is due next class, TUESDAY, NOVEMBER 29.

READ: the "Finite Markov Chains" handout (FMC); especially the Frobenius-Perron Theorem and its application to stationary distributions.

READ: the "Finite Probability Spaces" handout (FPS), all except Chapter 7.5 (Chernoff bound). Chap 7.5 is recommended but not required (may be used in a bonus problem)

RECOMMENDED READING: Linear Algebra: six lectures (also posted)

There are only DO problems at this time. Do not hand them in.

- DO13.1 All problems from FMC, especially 8.1.24, 8.1.31, 8.1.32, 8.1.33, 8.1.35, 8.1.36, 8.1.37.
- DO13.2 All problems from FPS, chapters 7.3 (Standard deviation) and 7.4 (Independent random variables), especially 7.3.4, 7.3.6, 7.4.4, 7.4.5, 7.4.6, 7.4.8, 7.4.14, 7.4.16.
- DO13.3 We roll n dice. What is the expected value of the product of the numbers shown?
- DO13.4 Let X_n be the number of triangles in a random graph. (a) Determine $E(X_n)$. (b) Determine $Var(X_n)$. (c) Asymptotically evaluate $Var(X_n)$. Show that $Var(X_n) \sim an^b$ where a and b are constants. Determine a and b. (d) Compare the result with the sum Y_n of $\binom{n}{3}$ independent indicator variables with the same expectation (1/8). Is the variance less or more? (e) Use the result of (c) to prove the Weak Law of Large Numbers for X_n , i. e., prove that it is very likely that X_n stays close (within a factor of $(1 \pm \epsilon)$) to its expectation.
- DO13.5 Prove that for a strongly connected digraph the following are equivalent:
 - (a) the number h divides the length of all cycles;
 - (b) the number h divides the length of all closed walks;
 - (c) it is possible to partition the vertex set into h classes $V_0, V_1, \ldots, V_{h-1}$ such that all edges go from V_i to V_{i+1} where the subscript is interpreted modulo h (i. e., $V_h = V_0$).
- DO13.6 Prove: for an $n \times n$ matrix A, the following are equivalent:
 - (a) A has a left inverse $(A^{-1}A = I)$
 - (b) A has a right inverse $(AA^{-1} = I)$
 - (c) A is nonsingular $(\det(A) \neq 0)$
 - (d) zero is not an eigenvalue of A.
- DO13.7 Prove: if A, B are $n \times n$ matrices and B is nonsingular then $B^{-1}A^tB = (B^{-1}AB)^t$.
- DO13.8 Let A^T denote the transpose of A (replace $a_{i,j}$ by $a_{j,i}$). Prove: $(AB)^T = B^T A^T$.
- DO13.9 Prove the triangle inequality, $||x+y|| \le ||x|| + ||y||$, using the Cauchy-Schwarz inequality.

DO13.10 Recall that the operator norm of an $n \times n$ matrix A is defined as

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$$

where x ranges over all nonzero vectors in \mathbb{R}^n . Prove: (a) for all $x \in \mathbb{R}^n$, $||Ax|| \leq ||A|| \cdot ||x||$.

- (b) For any two $n \times n$ matrices A, B we have $||AB|| \le ||A|| \cdot ||B||$.
- DO13.11 Recall the Spectral Theorem: If A is a symmetric real matrix then (a) all eigenvalues of A are real; (b) A has an orthonormal eigenbasis.

Use the Spectral Theorem to prove that if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of the symmetric real matrix A then $||A|| = \max_i |\lambda_i|$.

- DO13.12 Recall that a real matrix B is orthogonal if $B^T = B^{-1}$. Prove: B is orthogonal if and only if $(\forall x \in \mathbb{R}^n)(||Bx|| = ||x||)$.
- DO13.13 Let J be the $n \times n$ all-ones matrix (all entries are equal to 1). Let B be an orthogonal matrix of which the first column is $(1/\sqrt{n})\underline{1}$ where $\underline{1}$ denotes the all-ones column vector $(1,1,\ldots,1)^T$. Prove: $B^{-1}JB$ is a diagonal matrix with $(1,0,0,\ldots,0)$ in the diagonal (in this order).

DO13.14 Consider the rotation matrix

$$R_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

- (a) Prove: R_{α} is an orthogonal matrix.
- (b) Compute the complex eigenvalues of R_{α} . (Note: the result is appealing.)
- (c) Prove: $R_{\alpha}R_{\beta} = R_{\alpha+\beta}$.
- (d) Prove: if λ is a (complex) eigenvalue of an $n \times n$ orthogonal matrix then $|\lambda| = 1$.