Discrete Mathematics – CMSC-37110-1 Homework 8 – October 27, 2005 Posted October 30. Due Thursday, November 3 Instructor: László Babai Ry-164 e-mail: laci[at]cs[dot]uchicago[dot]edu

- HOMEWORK. Please print your name on each sheet. Please try to make your solutions readable. This homework is due THURSDAY, NOVEMBER 3.
- READ: "Asymptotic notation" handout.
- DO8.1 Suppose f(x) and g(x) are polynomials. Prove: (a) If $\deg(f) \leq \deg(g)$ then f(x) = O(g(x)); (b) if $\deg(f) = \deg(g)$ then $f(x) = \Theta(g(x))$.
- DO8.2 Prove: If f(x) = o(g(x)) then f(x) = O(g(x)).
- DO8.3 Prove: If $f(x) \sim g(x)$ then $f(x) = \Theta(g(x))$.
- DO8.4 (a) Prove: If $L =: \lim_{x \to \infty} \frac{f(x)}{g(x)}$ exists and $0 < |L| < \infty$ then $f = \Theta(g)$. (b) Exhibit two positive functions f and g such that $f = \Theta(g)$ but $\lim_{x \to \infty} \frac{f(x)}{g(x)}$ does not exist.
- DO8.5 Prove: $4^n \neq O(3^n)$.
- DO8.6 Prove: If $f(x) \sim g(x)$ and f(x) = o(g(x)) then f(x) = g(x) = 0 for all sufficiently large x (i. e., $(\exists x_0)(\forall x \geq x_0)(f(x) = g(x) = 0)$).
- DO8.7 Prove: The Θ relation is an equivalence relation on the set of functions with same unbounded domain. This includes the case of sequences, i.e., functions whose domain is the set of nonnegative integers.
- DO8.8 Prove: If $0 < f(x) \lesssim g(x)$ then f = O(g).

Homework (due at the beginning of the class **next Thursday**, **Nov 3**):

- HW8.1 (5+3 points) (a) Prove: If $f(x) = \Theta(g(x))$ and $\lim_{x\to\infty} f(x) = \infty$ then $\ln f(x) \sim \ln g(x)$. (b) Disprove: If $f(x) = \Theta(g(x))$ and $f(x) \geq 2$ and $g(x) \geq 2$ then $\ln f(x) \sim \ln g(x)$.
- HW8.2 (3 points) Find two sequences, $a_n > 1$ and $b_n > 1$ such that neither $a_n = O(b_n)$ nor $a_n = \Omega(b_n)$ holds.
- HW8.3 (8 points) Use the Prime Number Theorem to prove that $p_n \sim n \ln n$ where p_n denotes the n-th prime number.
- HW8.4 (3 points) Prove: If f(x) and g(x) are polynomials of degree ≥ 1 with positive leading coefficients then $\ln f(x) = \Theta(\ln g(x))$. (A polynomial of degree n is an expression of the form $f(x) = \sum_{i=0}^{n} a_k x^k$ where the leading coefficient a_n is not zero.)
- HW8.5 (2 points) Prove: $\binom{2n+1}{n} < 4^n$. (Reproduce the proof from class.)

- HW8.6 (4+3+5 points) (a) Give a very simple proof of the following: $F_n = \Theta(F_{n+1})$ where F_n is the n-th Fibonacci number. The proof should be just a few lines, with no reference to irrational numbers such as the golden ratio. (b) Find an increasing sequence of positive numbers a_n such that $a_n \neq \Theta(a_{n+1})$. (c) Let b_n be a sequence of positive numbers. Prove: If $b_n = \Theta(b_{n+1})$ then $\ln b_n = O(n)$.
- HW8.7 (Challenge problem) Prove that n+1 divides $\binom{2n}{n}$.
- HW8.8 (Challenge problem) Recall that a permutation of a set A is a bijection $A \to A$. If f is a permutation then f^k is the composition of f with itself k times; so for instance $f^3(x) = f(f(f(x)))$. The identity is the permutation $id: A \to A$ defined by id(x) = x for all $x \in A$. The order of f is the smallest positive k such that $f^k = id$. Let r(n) be the largest order of permutations of a set of n elements. Prove: $\ln r(n) \gtrsim \sqrt{n \ln n}$. (Use the Prime Number Theorem.)