Discrete Mathematics – CMSC-37110-1 Homework 7 – October 20, 2005 Instructor: László Babai Ry-164 e-mail: laci[at]cs[dot]uchicago[dot]edu

HOMEWORK. Please print your name on each sheet. Please try to make your solutions readable. **This homework is due THURSDAY, OCTOBER 27.** It is a lot of work, do not delay, start working on them right away.

READ: relevant sections of text, especially the Chinese Remainder Theorem (solving systems of congruences with pairwise relatively prime moduli).

- DO7.1 Prove the basic properties of congruences. All variables are universally quantified.
 - 1. Prove that congruence modulo m is an equivalence relation on \mathbb{Z} . State what property of divisibility you rae using for each.
 - (a) $a \equiv a \pmod{m}$
 - (b) If If $a \equiv b \pmod{m}$ then $b \equiv a \pmod{m}$.
 - (c) If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ then $a \equiv c \pmod{m}$.
 - 2. The equivalence classes defined by the previous exercise are called the "residue classes mod m." Prove: there are exactly m residue classes mod m.
 - 3. If $a \equiv b \pmod{m}$ then $at \equiv bt \pmod{m}$.
 - 4. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then
 - (a) $a + c \equiv b + d \pmod{m}$
 - (b) $a c \equiv b d \pmod{m}$
 - (c) $ac \equiv bd \pmod{m}$.
 - 5. If $a \equiv b \pmod{m}$ then $at \equiv bt \pmod{mt}$.
 - 6. If $a \equiv b \pmod{m}$ and $n \mid m$ then $a \equiv b \pmod{m}$.
 - 7. If $t \mid a$ and $t \mid b$ and $t \mid m$ then $a \equiv b \pmod{m}$ implies $a/t \equiv b/t \pmod{m/t}$.
 - 8. If $t \mid a$ and $t \mid b$ and gcd(m, t) = 1 then $a \equiv b \pmod{m}$ implies $a/t \equiv b/t \pmod{m}$.
 - 9. If $t \mid a$ and $t \mid b$ and gcd(m, t) = d then $a \equiv b \pmod{m}$ implies $a/t \equiv b/t \pmod{m}$.
- DO7.2 Prove: if $a \equiv b \pmod{m}$ then $a^k \equiv b^k \pmod{m}$. (Hint: induction using one of the fundamental properties stated in DO7.1.)
- DO7.3 Prove: if $a \equiv b \pmod{m}$ then gcd(a, m) = gcd(b, m).
- DO7.4 Recall that a positive integer p has the *prime property* if p > 1 and $(\forall a, b)(p \mid ab \Rightarrow (p \mid a \text{ or } p \mid b)$.

Prove the uniqueness of prime factorization (Fundamental Theorem of Arithmetic) based on the result that all prime numbers have the prime property. (Hint: induction.)

Homework (due at the beginning of the class next Thursday, Oct 27):

HW7.1 (2 points) If $p \ge 5$ is a prime number then $p \equiv \pm 1 \pmod{6}$.

- HW7.2 (5+1 points) (a) Prove: if g is a common divisor of a and b and g can be written as a linear combination of a and b then g is a greatest common divisor of a and b. (b) Why "a" greatest common divisor and not "the" greatest common divisor?
- HW7.3 (3 points each) Find the following multiplicative inverses or prove that they don't exist. Use Euclid's algorithm as shown in class; show all steps.
 - 1. $6^{-1} \pmod{73}$
 - 2. $13^{-1} \pmod{21}$
 - 3. $14^{-1} \pmod{98}$.
- HW7.4 (3+4+8 points) Find the following multiplicative inverses by guessing and verifying. Your answer should be an integer between 1 and the modulus minus 1. Write the verification in detail.
 - 1. $k^{-1} \pmod{2k+1}$.
 - 2. $(k+1)^{-1} \pmod{k^2}$.
 - 3. $F_n^{-1} \pmod{F_{n+1}}$ where F_n is the *n*-th Fibonacci number.
- HW7.5 (4+8 points) (a) Let p be a prime number. Prove: if $x^2 \equiv 1 \pmod{p}$ then $x \equiv \pm 1 \pmod{p}$. (b) Let p and q be two distinct odd prime numbers. Prove: there exists x such that $x^2 \equiv 1 \pmod{pq}$ but $x \not\equiv \pm 1 \pmod{pq}$. Hint. Recall that $a \equiv b \pmod{pq}$ is equivalent to $(a \equiv b \pmod{p})$ and $a \equiv b \pmod{q}$. Solve separately modulo each prime; combine using the Chinese Remainder Theorem.
- HW7.6 (6 points) Decide whether or not the following system of congruences is solvable. If so, find all solutions; state, modulo what integer the solution is unique. If not, prove your answer.
 - $x \equiv 4 \pmod{7}$
 - $x \equiv 6 \pmod{11}$
 - $x \equiv 1 \pmod{6}$
- HW7.7 (6 points) Decide whether or not the following system of congruences is solvable. If so, find all solutions;state, modulo what integer the solution is unique. If not, prove your answer.
 - $x \equiv 4 \pmod{8}$
 - $x \equiv 6 \pmod{10}$
 - $x \equiv 1 \pmod{5}$
- HW7.8 (5 points) Prove: if p is a prime number and $1 \le k \le p-1$ then p divides $\binom{p}{k}$. Use the fact that p has the prime property; do not use the uniqueness of prime factorization.
- HW7.9 (Challenge problem.) Prove: $(\forall k \geq 1)(\exists x)(x^2 \equiv -1 \pmod{5^k}).$
- HW7.10 (Challenge problem.) Let $\omega = \cos(2\pi/n) + i\sin(2\pi/n)$. Let T_n denote the set of integers k such that $1 \le k \le n$ and $\gcd(k,n) = 1$. Let $\mu(n) = \sum_{k \in T_n} \omega^k$. Prove: $(\forall n)(\mu(n) \in \{-1,0,1\})$.