Discrete Mathematics – CMSC-37110-1 Homework 4 – October 6, 2005

Instructor: László Babai Ry-164 e-mail: laci[at]cs[dot]uchicago[dot]edu

HOMEWORK. Please print your name on each sheet. Please try to make your solutions readable. Unless expressly stated otherwise, all solutions are due at the **beginning of the next class**.

Please write solutions to challenge problems on a separate sheet.

Handout: Chapers 1 and 2 from instructor's "Discrete Mathemtics" lecture notes (DM): "Logic" and "Asymptotic notation."

Reading: DM, pp. 1–10 (quantified formulas, asymptotic equality, inequality, little-oh notation). Review the concept of limits. Review precalculus, especially **logarithms**.

Do: (exercises you need to do but not hand in):

DO4.1 Let f, g be functions defined for all sufficiently large positive real numbers. Prove: $f \sim g$ if and only if f - g = o(f).

(Recall:
$$f \sim g$$
 means $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$.

Comment on the function notation: f is a function and f(x) is its value at x. Often, f(x) is also used to denote the function itself, viewing x as an indeterminate rather than a number. So $f \sim g$ means the same thing as $f(x) \sim g(x)$.

- DO4.2 Prove: $n(\ln n 1) + (1/2)(\ln(2\pi) + \ln n) \sim n \ln n$.
- DO4.3 Solve the problems of Quiz1, including the Bonus problems.

Homework (due at the beginning of the next class):

- HW4.1 (3 points) Prove: $(\forall \epsilon > 0) \left(\lim_{x \to \infty} \frac{\ln x}{x^{\epsilon}} = 0. \right)$ Use algebra only; do not use calculus beyond the fact, proved in class, that $(\ln x)/x \to 0$ (and basic properties of limits).
- HW4.2 (4 points) (Exponential beats polynomial.) Prove: for every polynomial p(x) and every C > 1, we have $p(x) = o(C^x)$.
- HW4.3 (4+3 points) (a) Prove: If $f \to \infty$ and $f \sim g$ then $\ln f \sim \ln g$. (b) Find functions f,g, defined for all positive real values of x, such that $(\forall x)(f(x)>1 \text{ and } g(x)>1)$ and $f\sim g$ but $\ln f\not\sim \ln g$.

- HW4.4 (4 points) Prove the asymptotic relation $\ln(n!) \sim n \ln n$ from first prinicples, without using Stirling's formula. Use directly the definition of limits. Find a hint in DM (Ex. 2.3.11).
- HW4.5 (2+4+3 points) Prove the following three statements. To prove parts (a) and (b), do not use Stirling's formula; make your proofs VERY simple. Use Stirling's formula for part (c).
 - (a) $\binom{2n}{n} < 4^n$
 - (b) $\binom{2n}{n} > \frac{4^n}{2n+1}$
 - (c) $\binom{2n}{n} \sim \frac{c4^n}{\sqrt{n}}$ for some constant c. Determine c.