- 1. Read Chapters 0 & 1, and Sections 2.1–2.4 of "Mathematics for 3D Game Programming & Computer Graphics."
- 2. Let $\mathbf{u} = \langle 2, -1, 0 \rangle$ and $\mathbf{v} = \langle 2, 1, -1 \rangle$. Then calculate the following quantities:
 - (a) $\mathbf{u} \cdot \mathbf{v}$
 - (b) $\mathbf{u} \times \mathbf{v}$
 - (c) $\mathbf{v} \times \mathbf{u}$
 - (d) $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$ (the projection of \mathbf{v} onto \mathbf{u}).
- 3. Prove that for any three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3$,

$$\mathbf{u} \times \mathbf{v} \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u}$$

4. Consider the following picture, where \mathbf{n} , \mathbf{l} , and \mathbf{r} are all unit vectors that lie in the same plane. Give an equation for \mathbf{r} in terms of \mathbf{n} and \mathbf{l} (*i.e.*, that does not refer to θ).

- 5. Consider the plane that contains the points (1,0,0), (0,2,0), and (0,0,1).
 - (a) Give the implicit equation for this plane.
 - (b) Give the parametric equation for this plane.
 - (c) What is the normal vector to this plane?
- 6. Let ${\bf u},{\bf v},{\bf w}\in\Re^3$ and let ${\bf M}$ be the matrix formed by taking ${\bf u},{\bf v},$ and ${\bf w}$ as its columns. Then show that

$$\det \mathbf{M} = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$$