
Algorithms – CS-27200/CS-37000
Pseudocodes for basic algorithms

in Number Theory:
the Euclidean algorithm and Repeated squaring

Problem 1. Calculate the g.c.d. of two positive integers, a ≥ b ≥ 0.

Solution: the Euclidean algorithm.

Pseusocode 1A.

0 Initialize: A := a, B := b
1 while B ≥ 1 do
2 division: A = Bq + R, 0 ≤ R ≤ B − 1
3 A := B, B := R
4 end(while)
5 return A

The correctness of the algorithm follows from the following loop in-
variant:

g.c.d.(A,B) = g.c.d.(a, b).

(In addition, at the end we use the fact that g.c.d.(A, 0) = A.)
The efficiency of the algorithm follows from the observation that after

every two rounds, the value of B is reduced to less than half. (Prove!) This
implies that the number of rounds is ≤ 2n where n is the number of binary
digits of b. Therefore the total number of bit-operations is O(n3), so this is
a polynomial-time algorithm. (Good job, Euclid!)

Pseusocode 1B: recursive.

0 procedure g.c.d.(a, b) (a ≥ b ≥ 0)
1 if b = 0 then return a
2 else division: a = bq + r, 0 ≤ r ≤ b− 1
3 return g.c.d.(b, r)

(This code does not require a separate analysis except to clarify that it
encodes the same algorithm. Clarify!) (OVER)

1



Problem 2. Calculate ab mod m where a, b, m are integers, a,m ≥ 1, b ≥ 0.

Solution: the method of repeated squaring.

Pseusocode 2A.

0 Initialize: X := 1, B := b, A = (a mod m)
1 while B ≥ 1 do
2 if B odd then B := B − 1, X := (AX mod m)
3 else B := B/2, A := (A2 mod m)
4 end(while)
5 return X

The correctness of the algorithm follows from the following loop in-
variant:

XAB ≡ ab mod m.

The efficiency of the algorithm follows from the observation that after
every two rounds, the value of B is reduced to less than half. (Prove!)
This implies that the number of rounds is ≤ 2n where n is the number of
binary digits of b. Moreover, we never deal with integers greater than m.
Therefore the total number of bit-operations is O(n(log m)2) ≤ O((log a +
log b + log m)3), so this is a polynomial-time algorithm: the length of the
input is the total number of bits of a, b, m, which is ≈ log a + log b + log m.

Pseusocode 2B: recursive.

0 procedure f(a, b, m) = (ab mod m) (b ≥ 0, a, m ≥ 1)
1 if b = 0 then return 1
2 elseif b odd then return a · f(a, b− 1,m) mod m
3 elseif b even then return f((a2 mod m), b/2,m)

(This code does not require a separate analysis except to clarify that it
encodes the same algorithm. Clarify!)

Note. For both problems, the explicit (nonrecursive) versions of the
algorithms are preferable.

2


