Algorithms CMSC-27000/37000 First Quiz. January 21, 2004 Instructor: László Babai

-	work. Do not use book, in the space provided. This quantum of the space provided of the	notes, or scrap j	
calls. Yo	s) Write a pseudocode for binary ou need to search for a real matrix $[1] \leq A[2] \leq \ldots \leq A[n]$). Doradocode only; do not analyze.	$\begin{array}{c} \text{umber } x \text{ in a sorted} \\ \text{a't forget proper row} \end{array}$	d array A of n
ematical be techn	s) Give a formal definition of t l expressions with very few E nical terms (e.g. input, real va ds like weight, value, knapsac	nglish words; those riable, constraint, e	words should
	s) For two sequences of real nu $a_n \gtrsim b_n$ (" a_n is greater than		
` '	s) Prove: the depth of a sort $a \gtrsim 2 \log n$. (log stands for log	_	sorts n items

5. (G only, 2 points) Prove: $\log(n!) \sim n \log n$.

- 6. A divide-and-conquer algorithm reduces an instance (=input) of size n to 3 instances of size n/2. (Ignore rounding.) The cost of the reduction is O(n). Let T(n) be the complexity of the algorithm on inputs of size n.
 - (a) (1 point) Write a recurrenct inequality for T(n).
 - (b) (1 point) State the problem (input-output) solved in class by a an algorithm with the stated parameters. State the name of the discoverers of the algorithm.
 - (c) (4 points) Ignore the cost of the reduction. Assuming $n=2^k$, prove that $T(n)=O(n^{\alpha})$ where $\alpha=\log 3$.
 - (d) (G only, 4 points) Do not ignore the cost of the reduction. Prove that $T(n) = O(n^{\alpha})$ where $\alpha = \log 3$. Use the method of reverse inequalities.
- 7. (a) (5 points) Let X be an n-digit integer (decimal). We decide primality of X (i. e., whether or not X is a prime number) by trial division: we divide X by each integer up to $\lfloor \sqrt{X} \rfloor$. Is this a polynomial-time algorithm? Prove your answer. (b) (G, only, 3 points) What if we only divide by the prime numbers (up to \sqrt{X})?
- 8. (G only, 4 points) In the communication algorithm discussed in class, suppose X=213 and Y=268. Suppose Alice chooses her prime number p at random from all primes with at most two decimal digits. What is the probability that Bob will erroneously report "X=Y"? (Use the fact that $\pi(100)=25$ where $\pi(x)$ denotes the number of primes $\leq x$.) State what choices of p will cause this error.