
Algorithms – CS-27200/37000 Homework – January 16, 2004
Instructor: László Babai Ry-164 e-mail: laci@cs.uchicago.edu

READING Review all previous handouts. Study PSEUDOCODE conven-
tions in handouts. By Monday: review graph theory (Discrete Math).

IMPORTANT. If you have not done so yet, please send e-mail to the instruc-
tor with your name, major, year, type of credit sought (letter grade, P/F,
etc.), list of proof-oriented math courses previously taken; include whether
or not you took CMSC-17400. In the subject write 27000 info or 37000 info,
as approrpiate.

HOMEWORK. Please print your name on each sheet. Print “U” next
to your name if you seek 27000 credit and “G” if you seek 37000 credit.
Undergraduates receive the stated number of points as bonus points for “G
only” problems. – Please try to make your solutions readable. Unless ex-
pressly stated otherwise, all solutions are due at the beginning of the next
class.

Recall from class:

DEFINITION. A function f(n) is polynomially bounded if

(∃C)(f(n) = O(nC)).

We say that C is an admissible exponent.
We say that an algorithm is polynomial time if the cost of the algo-

rithm is polynomially bounded as a function of the length of the input. Note
that this is a worst-case concept.

Recall the following characterization of polynomially bounded functions.

THEOREM. Suppose f(n) ≥ 1 for all sufficiently large n. Then the func-
tion f(n) is polynomially bounded if and only if ln f(n) = O(lnn).

5.1 (G only) (3 points)] Can we omit the condition “f(n) ≥ 1” in the Theorem?
Prove your answer.

5.2 (U, G) (2 points) True or false: log2(n) = Θ(lnn). Prove your answer.

5.3 (U, G) (4 points each) Decide whether or not each of the following functions
is polynomially bounded. Prove your answers. If your answer is “yes,”
state all admissible exponents. (a) n2 log n; (b) 8log n; (c) 2

√
n; (d)

(G only) (dlog ne)!.

5.4 (U, G) (10 points) An algorithm takes positive integers x as input (in binary)
and requires b2

√
log xc time. Is this a polynomial time algorithm? State

and prove your answer. Give a proof of the required asymptotic re-
lation. Caveat. Remember that the complexity of an algorithm is
measured as a function of the length of the input. In case of integer
inputs, this means the bit-length (total number of bits).

1



5.5 (U,G) (12 points) A “string over the English alphabet” means a sequence of
letters of the English alphabet. A substring is obtained by deleting
some of the letters. (It is permitted to delete all or to delete none.)
Note that substrings do not need to be contiguous. Examples: ATTIC
and HEAT are substrings of MATHEMATICS, but EMMA and HATE
are not.)

Given two strings of respective lengths m and n over the English al-
phabet, find a longest common substring in O(mn) steps. Example:
(m = 11, n = 15): input: MATHEMATICS, COMPUTERSCIENCE.
Output: MTEIC.

Descibe your algorithm in pseudocode. (The strings are given as arrays
of characters.) Name the method used.

If you introduce auxiliary variables, define them in English.
A method of calculation is no substitute for a simple and natural def-
inition. That definition is the key to the solution and account for at
least half the credit. Elegance counts.

Hint. This is yet another member of a family of very elegant algorithms
discussed in class and in handouts.

5.6 (U,G) (for your entertainment only, 0 points, do not hand in) Out of 12 given
coins we know that one is counterfeit but we don’t know whether
it is heavier or lighter. Given a balance, using three measurements
determine which coin is counterfeit and whether it is heavier or lighter
than the others. (All the normal coins have the same weight. Each
measurement on the balance can result in three outcomes: left-heavy
(L), right-heavy (R), or equal (E).)

5.7 (U,G) (a) (5 points) Prove that 3 measurements do not suffice if we have 14
coins in the preceding problem. – Your solution should be very
elegant, just a couple of lines. Use a method studied in class for
proving lower bounds on complexity. Name the method.

(b) (G only, 10 points) Prove that 3 measurements do not suffice if we
have 13 coins. Elegance counts. (Note: if you solve (b) then you
solved (a) as well, but not in the most elegant way. You will not
automatically receive the 5 points for (a), only if you separately
give the most elegant solution to (a).)

5.8 (G only) UNDERGRADS: READ and UNDERSTAND the problem and the
algorithm. EXPERIMENT with the algorithm. (Do not hand in un-
less you solve the problem for bonus points.)

In this problem, “graph” means undirected graph. Two edges are said
to be independent if they do not share a vertex. A matching in a
graph is a set of independent edges. (In other words, a matching in
G is a spanning subgraph of G in which every vertex has degree ≤ 1.)
A maximum matching is a matching of maximum size (max number
of independent edges). The greedy algorithm for finding a maximum
matching proceeds as follows:

2



Greedy Matching(G)

The variable M maintains a growing list of independent edges.

0 Initialize: M := empty list
1 for e ∈ E(G) do
2 if e is independent of all edges in M then
3 add e to M
4 end(if)
5 end(for)
6 return M

(a) (6 points) Prove: this algorithm does not always return a maxi-
mum matching. Show that for every k there exists a graph with
maximum matching size 2k where the algorithm returns a match-
ing of size k only. For 3 bonus points, make your graphs con-
nected.

(b) (6 points) Prove that the algorithm always returns a matching of
size at least half of the maximum.

(c) (2 points) Estimate the number of steps taken by the algorithm
in terms of the number of vertices (n) and the number of edges
(m). Express your answer using the big-oh notation (ignore a
constant factor). If we define n + m to be the input size, is
this a “polynomial time algorithms,” i. e., is the number of steps
polynomially bounded as a function of the input size?

Note that the result of the greedy algorithm depends not only on the
graph but on the order in which its edges are accessed.

3


