
Algorithms – CS-27200/37000 Homework – January 14, 2003
Instructor: László Babai Ry-164 e-mail: laci@cs.uchicago.edu

ADVICE. Take advantage of the TA’s office hours on Tuesday and Thurs-
day, 5–6pm in the Theory lounge, Ry-162

READING (due next class) Handouts: dynamic programming, knapsack
problem. Review PSEUDOCODE conventions used in the handouts. Re-
view all previous handouts.

HOMEWORK. Please print your name on each sheet. Print “U” next
to your name if you seek 27000 credit and “G” if you seek 37000 credit,
regardless of your grad/undergrad status. Please try to make your solutions
readable. Unless expressly stated otherwise, all solutions are due at the
beginning of the next class.

Homework is collected in three separate piles (U, G, “G only”).
Please put your solutions to “G only” problems on that pile, and your solu-
tions to other problems on the “U” or “G” pile according to the credit you
seek.

4.1 (U, G) (12 points) (All-ones square problem.) Given an n×n array A of zeros
and ones, find the maximum size of a contiguous square of all ones.
(You do not need to locate such a largest all-ones square, just deter-
mine its size.) Solve this problem in linear time. “Linear time” means
the number of steps must be O(size of the input). In the present prob-
lem, the size of the input is O(n2). Manipulaing integers between 0
and n counts as one step; such manipulation includes copying, incre-
menting, addition and subtraction, looking up an entry in an n × n
array.

Describe your solution in pseudocode. The solution should be very
simple, no more than a few lines. Elegance counts. Hint: dynamic
programming. Example:

1 0 1 1 0 1
1 1 0 1 1 1
1 0 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 0 1 1

(OVER)
In this example, the answer is 3. There are three contiguous 3×3 square

subarrays of all-ones. One is indicated below by underlines, another is shown
in a box, the third one is indicated by Italics.

1 0
1 1

1 1 0
0 1 1

1
1

1 0
1 1
1 1

1 1 1
1 1 1
1 1 1

1
1
0

1 1 1 0 1 1

1



4.2 (U, G) (a) (2 points) Let {xn} be a sequence of real numbers. Define, using
ε and a threshold value n0, the statement that limn→∞ xn = 1. Your
answer should be a well-quantified, properly formed formula involving
no English words. Warning: the order of the quantifiers is essential.
(b) (G only) (4 points) Let an, bn, cn, dn be sequences of positive real
numbers. Prove, using the definition from (a): if an ∼ cn and bn ∼ dn

then an + bn ∼ cn + dn.

4.3 (G only) (2 points) Prove:
(
n
5

)
∼ cnd for some constants c, d. Determine c, d.

4.4 (G only) (a) (3 points) Prove: if p is a prime number and x2 ≡ 1 (mod p) then
x ≡ ±1 (mod p). (b) (8 points) Prove: if N = pq where p and
q are distinct odd primes then (∃x)(x2 ≡ 1 (mod N) AND x 6≡ ±1
(mod N)). (The universe of the variable x is Z.)

4.5 (G only) Consider the Knapsack problem described in the last handout. The
input parameters in that problem are positive reals called weights and
values; and a “weight limit” W is given. It is shown in the handout how
one can solve this problem in O(nW ) steps (arithmetic, comparison,
bookkeeping) if all weights (including W ) are integers.

(a) (15 points) Assume now that all values are integers (but the
weights are real). Let V denote the sum of the values. Solve
the knapsack problem in O(nV ) steps under this assumption.
Your solution should be a simple pseudocode.

(b) (15 points, due Friday, January 20) (Efficient approximation al-
gorithm.) Assume both the weights and the values are real and
assume an error parameter ε is given (0 < ε < 1/2). Find the
maximum knapsack value within ±εV error. (Your solution must
satisfy the weight constraint exactly, not approximately; the error
is in comparison with the (unknown) optimum solution.) Com-
plexity: Your algorithm should use O(n2/ε) steps. The steps in-
clude bookkeeping, arithmetic and comparison of O(log(n/ε))-
digit integers, arithmetic of reals, and rounding reals to the near-
est integer.

2


