1. (5 points) Write a pseudocode for insertion in a binary search tree. Do NOT use recursive calls. Do not (re)balance the tree.

2. (2 points) Does the problem of sorting a list of integers belong to the complexity class \(P \)? Reason your answer.

3. (6 points) Give a formal definition of the complexity class NP. You need to define what it means for a language \(L \subseteq \Sigma^* \) to belong to NP. Use quantifier formalism, no English words (except for logical connectives such as “AND”).

4. (3 points) For two sequences of real numbers, \(\{a_n\} \) and \(\{b_n\} \), define the relation \(a_n \sim b_n \) ("\(a_n \) is greater than or asymptotically equal to \(b_n \)).

5. (3 points) Prove: in order to arrange \(n \) data in a binary search tree, we need to perform \(\sim n \log n \) comparisons.
6. **(3+3+3 points)** For each statement, decide whether or not it is a loop-invariant for BFS: (a) “Vertex #2 is black.” (b) “Vertex #2 is white.” (c) “Vertex #2 cannot change from black to white.” Reason your “NO” answers. Use the definition of loop-invariants given in a homework sheet.

7. (a) **(3 points)** What are the data maintained by a UNION-FIND data structure? (b) **(3 points)** What are the requests served and what is the effect of each request? (c) **(5 points)** Prove: under the hierarchical implementation with the “bigger wins” rule for merging, the depth of each tree remains $\leq \log n$. (d) **(G only, 5 points)** Prove: under the hierarchical implementation with the “deeper wins” rule for merging, the depth of each tree remains $\leq \log n$.

8. **(G only) (a) (4 points)** Describe the topology of Fibonacci heaps. (b) **(4 points)** Prove that the degree of each root node in a Fibonacci heap is $O(\log n)$. (c) **(6 points)** Describe the execution of the EXTRACT-MIN operation in a Fibonacci heap; state the actual cost and how it is covered.