Algorithms – CS-27200/CS-37000

Dynamic programming: the knapsack problem

The input of the “Knapsack Problem” is a list of weights w_1, \ldots, w_n, a list of values v_1, \ldots, v_n, and a weight limit W. All these are positive reals.

The problem is to find a subset $S \subseteq \{1, \ldots, n\}$ such that the following constraint is observed:

$$\sum_{k \in S} w_k \leq W.$$ \hspace{1cm} (1)

The objective is to maximize the total value under this constraint:

$$\max \left\{ \sum_{k \in S} v_k \right\}.$$ \hspace{1cm} (2)

Theorem. Under the assumption that the weights are **integers** (but the values are real), one can find the optimum in $O(nW)$ operations (arithmetic, comparison, bookkeeping).

The solution illustrates the method of “dynamic programming.” The idea is that rather than attempting to solve the problem directly, we embed the problem in an $n \times W$ array of problems, and solve those problems successively.

For $0 \leq i \leq n$ and $0 \leq j \leq W$, let $m[i, j]$ denote the maximum value of the knapsack problem restricted to $S \subseteq \{1, \ldots, i\}$, under weight limit j.

The heart of the solution is the following recurrence.

$$m[i, j] = \max\{m[i - 1, j], \quad v_i + m[i - 1, j - w_i]\}. \hspace{1cm} \heartsuit$$

Explanation: if in the optimal solution $i \notin S$ then $m[i, j] = m[i - 1, j]$; otherwise we gain value v_i and have to maximize from the remaining objects under the remaining weight limit $j - w_i$ (assuming $j \geq w_i$). The optimum will be the bigger of these two values.

It should also be clear that $m[0, k] = m[k, 0] = 0$ for all $k \geq 0$. With this initialization, a double for-loop fills in the array of values $m[i, j]$:

Initialize (lines 1–6):

1. for $i = 0$ to n
2.
3.
4. for $j = 1$ to W
5.
6.

Main loops:

7. for $i = 1$ to n
8.
9. if $j < w_i$ then $m[i, j] := m[i - 1, j]$ (* item i cannot be selected *)
10. else $m[i, j] := \text{as in equation } \heartsuit$ (* heart of solution *)
11. end
12. end

The statement inside the inner loop expresses the value of the next $m[i, j]$ in terms of values already known so the program can be executed.

The required optimum is the value $m[n, W]$. Evaluating equation \heartsuit requires a constant number of operations per entry, justifying the $O(nW)$ claim.