The Karatsuba–Ofman algorithm provides a striking example of how the “Divide and Conquer” technique can achieve an asymptotic speedup over an ancient algorithm.

The classroom method of multiplying two \(n \)-digit integers requires \(\Theta(n^2) \) digit operations. We shall show that a simple recursive algorithm solves the problem in \(\Theta(n^\alpha) \) digit operations, where \(\alpha = \log_2 3 \approx 1.58 \). This is a considerable improvement of the asymptotic order of magnitude of the number of digit-operations.

We describe the procedure in \textit{pseudocode}.

\textbf{Procedure \(KO(X, Y) \)}

\textit{Input:} \(X, Y \): \(n \)-digit integers.
\textit{Output:} the product \(X \ast Y \).
\textit{Comment:} We assume \(n = 2^k \), by prefixing \(X, Y \) with zeros if necessary.

1. \textbf{if} \(n = 1 \) \textbf{then} use multiplication table to find \(T := X \ast Y \)
2. \textbf{else} split \(X, Y \) in half:
 3. \(X := 10^{n/2}X_1 + X_2 \)
 4. \(Y := 10^{n/2}Y_1 + Y_2 \)
 5. \textit{Comment:} \(X_1, X_2, Y_1, Y_2 \) each have \(n/2 \) digits.
 6. \(U := KO(X_1, Y_1) \)
 7. \(V := KO(X_2, Y_2) \)
 8. \(W := KO(X_1 - X_2, Y_1 - Y_2) \)
 9. \(Z := U + V - W \)
10. \(T := 10^nU + 10^{n/2}Z + V \)
11. \textit{Comment:} So \(U = X_1 \ast Y_1, V = X_2 \ast Y_2, W = (X_1 - X_2) \ast (Y_1 - Y_2), \) and therefore \(Z = X_1 \ast Y_2 + X_2 \ast Y_1 \). Finally we conclude that \(T = 10^nX_1 \ast Y_1 + 10^{n/2}(X_1 \ast Y_2 + X_2 \ast Y_1) + X_2 \ast Y_2 = X \ast Y \).
12. return \mathcal{T}

Analysis. This is a recursive algorithm: during execution, it calls smaller instances of itself.

Let $M(n)$ denote the number of digit-multiplications (line 1) required by the Karatsuba–Ofman algorithm when multiplying two n-digit integers ($n = 2^k$). In lines 6,7,8 the procedure calls itself three times on $n/2$-digit integers; therefore

$$M(n) = 3M(n/2). \tag{1}$$

This equation is a simple recurrence which we may solve directly as follows. Applying equation (1) to $M(n/2)$ we obtain $M(n/2) = 3M(n/4)$; therefore $M(n) = 9M(n/4)$. Continuing similarly we see that $M(n) = 27M(n/8)$, and it follows by induction on i that for every i ($i \leq k$),

$$M(n) = 3^i M(n/2^i).$$

Setting $i = k$ we find that $M(n) = 3^k M(n/2^k) = 3^k M(1) = 3^k$. Notice that $k = \log n$ (base 2 logarithm), therefore $\log M(n) = k \log 3$ and hence $M(n) = 2^{\log M(n)} = 2^{k \log 3} = (2^k)^{\log 3} = n^{\log 3}$.

It would seem that we reduced the number of digit-multiplications to $n^{\log 3}$ at the cost of an increased number of additions (lines 9, 10). Appearances are deceptive: actually, the procedure achieves similar savings in terms of the total number of digit-operations (additions as well as multiplications).

To see this, let $T(n)$ be the total number of digit-operations (additions, multiplications, bookkeeping (copying digits, maintaining links)) required by the Karatsuba–Ofman algorithm. Then

$$T(n) = 3T(n/2) + O(n) \tag{2}$$

where the term $3T(n/2)$ comes, as before, from lines 6,7,8: the additional $O(n)$ term is the number of digit-additions required to perform the additions and subtractions in lines 9 and 10. The $O(n)$ term also includes bookkeeping costs.

We shall learn later how to analyse recurrences of the form (2). It turns out that the additive $O(n)$ term does not change the order of magnitude, and the result will still be

$$T(n) = \Theta(n^{\log 3}) \approx \Theta(n^{1.58}). \tag{3}$$