CMSC 10500-1: Homework 8

(due on Wednesday July 21st)

This will be the last homework, so there are two sets of problems and they are due on
Wednesday (not Monday). The final exam will be held on Friday, from 1.30 to 4.30 pm (in
the Mac Lab). You can either come directly there, or come to the class by 1.15 and we can
go from there.

Generating all permutations

In class we saw how to write a program which given a list generates all permutations of the
same. In this exercise we do the same problem using higher order functions and a different
approach.

In class the approach was as follows. For each element x in the list, remove x from the list
and generate all permutations of the remaining list. Then add x in front of each generated
permutation. Accumulate all these permutation for different x’s, and output this as the
answer.

The approach we use here is as follows: Remove the first element of the list. Generate
all permutations of remaining list. Now insert the first element in each position of each
permutation so far computed. This generates all the permutations.

For example consider the list (1ist 1 2 3). Remove the first element 1, and generate
all permutations of (list 2 3), namely (1ist (list 2 3) (list 3 2)). Now insert 1
into each position of each permutation we have so far. This gives us

(list (1ist 1 2 3) (list 2 1 3) (list 2 3 1)
(list 1 3 2) (1ist 3 1 2) (list 3 2 1))

In order to do that, you will need the interval function from a previous homework.
Here is another implementation of the interval function using higher order functions.

;3 interval: number number -> list-of-numbers
;5 list of all numbers from low to high (both inclusive)
(define (interval low high)

(build-1ist (addl (- high low)) (lambda (x) (+ low x)))
)

build-list takes two arguments n and fn and returns the list (1ist (£ 0) (f 1)
(f n)). In our case n = high — low + 1 and f(z) = low + .
Now proceed using the following outline:



. (8 pts) Write a scheme function insert-at which consumes three argumentsk s 1st.
1 < k is a number, s is of arbitrary type and 1st is a list (with arbitrary contents).
Your function should produce a list consisting of 1st with s inserted at position k.
For eg, if k=1, then it should be inserted at the beginning, and if k > (length 1st)
then it should be inserted at the end.

. (5 pts) Write a scheme function ins-every which consumes two arguments s and 1st.
s is of any type (its type should not affect your program, but for concreteness you may
assume it is a symbol), and 1st is a list (with arbitrary contents). This function should
produce a list of lists obtained by inserting s at every position in 1st (including the
first and the last). Do not use recursion.

. (5 pts) Write a scheme function ins-all-every which consumes two arguments s and
lol. s is as before, and 1ol is a list of lists. This function should produce a list of lists
obtained by inserting s at every position in all sublists of 10l. Do not use recursion.

. (2 pts) Finally write a scheme function permute which consumes a list and produces
a list of all permutations of the given list.

> (permute (list ’a 1 2 3))

(list (list ’a 1 2 3) (list 1 ’a 2 3) (Qist 1 2 ’a 3) (list 1 2 3 ’a)

(list ’a 2 1 3) (list 2 ’a 1 3) (list 2 1 ’a 3) (list 2 1 3 ’a)

(list ’a 2 3 1) (list 2 ’a 3 1) (list 2 3 ’a 1) (list 2 3 1 ’a)

(list ’a 1 3 2) (list 1 ’a 3 2) (list 1 3 ’a 2) (list 1 3 2 ’a)

(list ’a 31 2) (list 3 ’a 1 2) (list 31 ’a 2) (1list 3 1 2 ’a)

(list ’a 32 1) (Qlist 3 ’a 2 1) (list 3 2 ’a 1) (1list 3 2 1 ’a)
)
Solution

;; insert-at: number X list-of-X -> list-of-X

o insert s at position k>= 1
s if k > length of list, add

(define (insert-at k s los)

(cond

[(empty? los) (cons s empty)]

[(= k 1) (cons s los)]
[else (cons (first los) (insert-at (- k 1) s (rest los)))]

in given list.
at last position

;5 interval: number number -> list-of-numbers
;5 list of all numbers from low to high inclusive

(define (interval low high)



(build-list (addl (- high low)) (lambda (x) (+ low x)))

;5 ins—every: X list-of-X -> list-of-list-of-X
3 list of lists obtained by inserting s at every position in los
(define (ins-everyl s los)

(map (lambda (k) (insert-at k s los)) (interval 1 (addl (length los)))))

;; another implementation of ins-every
;; using build-list directly
(define (ins-every2 s los)
(build-1list (addl (length los)) (lambda (k) (insert-at (addl k) s los))))

(define ins-every ins-everyl) ; Choose first implementation

;3 ins—all-every: X list-of-list-of-X
s insert s at every position in every list in lol
o and generate the list of lists
(define (ins-all-every s lol)
(foldr append empty (map (lambda (1st) (ins-every s 1lst)) lol)))

;; permute: list -> list-of-list
M generate all permutations of the given list
(define (permute los)
(cond
[(empty? los) (list empty)]
[else (ins-all-every (first los) (permute (rest los)))]
)
)

There are two ways to implement ins-every. One uses map and interval and the other
uses build-list directly.

Note that in ins-all-every we are essentially using the flatmap of previous exercise.

Traversals of a binary tree

5. (6 pts) Write a scheme function which consumes two lists in and pre containing
the same symbols/number (in a different order), and produces a binary tree whose
in-order traversal is in and pre-order traversal is pre. Assume all elements of the tree
are distinct.

Hint: By looking at the in-order and the pre-order traversal of a binary tree, identify
the root, elements in the left and right subtrees and proceed recursively.



6. (4 pts) Repeat the previous problem for in-order and post-order (instead of pre-order).
Assume all elements of the tree are distinct.

Solutions

Before we get to the scheme code, we need to reason about this problem a little. That will
tell us what kind of helper functions, we need to solve the problem.

We start by identifying the root. In a pre-order traversal, the root of the tree is the first
element. Having identified the element stored at the root of the tree, we then observe that in
the in-order traversal, the root lies in between the left subtree and the right subtree. Thus
given the root we can use the in-order traversal to find the elements of the left subtree (those
elements of the list which occur before the root in the in-order traversal) and the right subtree
(those elements occurring after the root). Not only does this give us the elements of the
left and right subtrees, it also gives us the in-order traversals of the left and right subtrees.
Having identified the elements which make up the left subtree, we observe that the pre-order
traversal, consists of the root, the pre-order traversal of the left subtree followed by the pre-
order traversal of right subtree. We also know that all the elements of the tree are distinct.
Thus the pre-order traversal of the left subtree will be those elements in pre-order traversal
of the main tree, which also occur in the left subtree (which we have already identified). The
order in which these elements occur in the pre-order traversal of the main tree, gives us the
pre-order traversal of the left subtree. Similarly we get the pre-order traversal of the right
subtree.

After having done all this, we have reduced the original problem of finding the main
tree (given the in-order and pre-order traversals) to the same problem for its left and right
subtrees. Hence by recursion we are done.

It only remains to identify the base cases. In case of the empty list, the tree has to be
empty. If the in-order traversal has only one element, then that must be the root (and the
only node) of the tree. This completes the first problem.

If we are given the in-order and the post-order traversal, the same analysis above holds.
Only difference is that the root is now the last element of the post-order traversal.

From the above analysis, we see that we need functions to do the following:

e Given a list 1st and an element elt, generate a list of elements of 1st which occur
before elt.

e Similarly for list of elements which occur after elt.

e Finally, given a small list and a large list, we need a function which returns all the
elements of the small list in the order in which they are found in the large list.

The complete code is given below:

(define-struct bt (left data right))



; ;before: list-of-X X —-> list-of-X
;3 all elements of input list before given item
(define (before 1lst x)
(cond
[(empty? 1lst) empty]
[(equal? x (first 1lst)) empty]
[else (cons (first 1lst) (before (rest 1lst) x))]

;; after: list-of-X X —-> list-of-X
;3 all elements of input list after given item
(define (after 1lst x)
(cond
[(empty? 1lst) empty]
[(equal? x (first 1st)) (rest lst)]
[else (after (rest 1lst) x)]

;; sublist: list-of-X list-of-X -> list-of-X
- Return all the elements of big found in small
M in the order in which they are found in big
(define (sublist small big)
(local (
(define (isin elt) ; is elt in the list 1lst
(not (empty? (filter (lambda (x) (equal? x elt)) small))))
)
(filter isin big)
)

(define (inpre-bt-helper in pre)

(local (
(define root (first pre))
(define inleft (before in root))
(define inright (after in root))
(define preleft (sublist inleft pre))
(define preright (sublist inright pre))
)

(make-bt (inpre-bt inleft preleft) root (inpre-bt inright preright))
)



;; Construct the binary tree given
S inorder and pre order traversals
(define (inpre-bt in pre)

(cond

[(empty? in) empty]

[(empty? (rest in)) (make-bt empty (first in) empty)]

[else (inpre-bt-helper in pre)]

)

(define (inpost-bt-helper in post)

(local (
(define
(define
(define
(define
(define

)

(make-bt (inpost-bt inleft postleft) root (inpost-bt inright postright))

)

;; Construct the binary tree given inorder and pre order traversal

root (first (reverse post)))
inleft (before in root))

inright (after in root))

postleft (sublist inleft post))
postright (sublist inright post))

(define (inpost-bt in post)

(cond

[(empty? in) empty]

[(empty? (rest in)) (make-bt empty (first in) empty)]

[else (inpost-bt-helper in post)]

)



