
CMSC 10500-1: Homework 6

(due on Monday July 12th)

The Sieve Method

In a previous homework (and midterm), we saw how to check if a number was prime or
not. This exercise, outlines a method to generate the list of all prime numbers lesser than
a given number. This ancient method is also called the The Sieve of Erosthenes. The
idea behind this method is very simple. Let n denote the number till which we want to find
primes.

• Start with a list of all numbers from 2 to n.

• Mark 2 and cross out all multiples of 2.

• Mark 3 and cross out all multiples of 3.

• In general, mark the first uncrossed number you see and cross out all multiples of it.

• Eventually all numbers have been either marked or have been crossed out.

• The numbers which have been marked are precisely the prime numbers.

Lets start with an example. Take n=22. The following table shows the process. The bold
numbers represent the marked numbers and the underlined numbers represent the crossed
out numbers.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Hence we conclude that 2,3,5,7,11,13,17 and 19 are all the prime numbers lesser than or
equal to 22.

Your task is to write a scheme function primes which consumes a number n and produces
a list of all primes lesser than or equal to n. Accomplish this using the following outline.
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1. (4 points)Write a function interval which consumes two integers low and high and
returns a list containing all the numbers between (and inclusive) low and high.

> (interval 3 9)

(list 3 4 5 6 7 8 9)

2. (4 points) Write a function sieve which consumes a number k and a list of numbers
lon and produces a list containing all the numbers in lon which are not a multiple of
k.

> (sieve 3 (list 4 5 6 7 8 9))

(list 4 5 7 8)

3. (5 points) Write a function sieve-helper which consumes a list of potential prime
numbers (candidates) and a list of known primes (known) and produces the list of all
primes in known and candidates. You may assume that the first candidate (if any)
is always a prime. Thus you enlarge the known list by adding the first candidate, and
remove all multiples of the first candidate from the candidate list, and repeat this till
there are no candidates, in which case you just return the known list as the answer.
Use recursion to repeat, and make sure you check for any boundary cases.

> (sieve-helper (list 3 5 7 9) (list 2))

(list 2 3 5 7)

4. (2 points) Finally write a function primes, which just calls your helper function with
the list of all numbers between 2 and n (as candidates) and the empty list (as known).

> (primes 39)

(list 2 3 5 7 11 13 17 19 23 29 31 37)

Note: Set your scheme language to “Beginning student with LIST abbreviations” (or
higher) to save yourselves the bother of not having to read through a whole lot of cons’s.

Solution

The interval function is simple. As long as low <= high, keep adding low to the front of
the list. This is used to generate the initial list of candidate primes (all numbers between 2
and n).
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;; interval: number number -> list-of-number

;; return a list of numbers between low and high inclusive

(define (interval low high)

(cond

[(> low high) empty]

[else (cons low (interval (+ low 1) high))]

)

)

Each round of processing is done by this function sieve. It just removes all multiples of
its first argument from the given list of numbers. Just check if the first element is a multiple
of k or not and add it to the output list if it is not. Exercise: (don’t turn it in) implement
sieve using filter and local or lambda.

;; sieve: number list-of-numbers -> list-of-numbers

;; remove all multiples of numbers from list

(define (sieve k lon)

(cond

[(empty? lon) lon]

[(= (remainder (first lon) k) 0) (sieve k (rest lon))]

[else (cons (first lon) (sieve k (rest lon)))]

)

)

The sieve-helper is the key to whole algorithm, it keeps track of all the numbers.
Crossed out numbers are just removed from the list. Marked number are moved over to the
known list, and unprocessed numbers (i.e. unmarked numbers not crossed out) are stored in
candidates. Also, we assume that the first unprocessed number is always a prime. Exercise:
(don’t turn in) why is this true?. Hence, we just need to move the first number of candidates
over to known and remove all multiples of (first candidates) from candidates (using
sieve). When we no longer have any numbers to process, we just return the known list.

;; sieve-helper: list-of-numbers list-of-numbers -> list-of-numbers

;; return list of primes in candidates or known.

;; known has numbers known to be primes.

;; candidates has a list of potential primes,

;; and the first one is a prime.

(define (sieve-helper candidates known)

(cond

[(empty? candidates) known]

[else (sieve-helper

(sieve (first candidates) (rest candidates))

(cons (first candidates) known)
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)

]

)

)

Finally, putting it all together to get the list of primes till n, we start with all numbers
from 2 to n and an empty list for known. Even though sieve-helper finds the primes in
increasing order, it keeps adding it to the beginning of the list. Hence to get the list of
primes in increasing order, we need to reverse the output of sieve-helper.

;; primes: number -> list-of-numbers

;; list all primes less or equal to given number

(define (primes n)

(cond

[(<= n 1) empty]

[else (reverse (sieve-helper (interval 2 n) empty))]

)

)
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