CMSC 10500-1: Homework 3

(due on Friday July 2nd)

The magical rabbit colony

Long ago, there was a colony of magical rabbits. These rabbits would reproduce at an
abominable rate. Each rabbit would take a month to mature. After the initial month, the
rabbit produces one offspring every month. Also these magical rabbits never die. The colony
started with one lone rabbit.

Let F,, denote the number of rabbits in the colony after n months.

1.
2.

(2 pts) Calculate F, Fy, F3, F) and F5.
(3 pts) Prove that for n > 2, F,, = F,,_1 + F,_».

(5 pts) Write a simple scheme function fib which takes an input a number n and
returns the value of F),. Evaluate (fib 30) and notice how long it takes to calculate
(fib 30). If you are really adventurous you may try calculating (fib 50).

(5 pts) Observe that the number of recursive calls needed to calculate (fib 30) is
(fib 30). Write another scheme function £ib2 to calculate F,, so that the number of
recursive calls to calculate (fib2 30) is only 30, and evaluate (log (fib2 1476)).

Hint: calculate the pair (F,1, F,) from (F,, F,_1).

Comments: fib2 takes about n recursive calls to calculate F,. One can actually
write a £ib3 which requires less than 4log,n recursive calls to calculate F,,, using
another clever trick.

Solution

1.

2.

F1:17F2:2,F3:3,F4:5,F5:8.

The number of rabbits at the end of the n’th month equals the number of rabbits at the
end of the (n —1)’st month + the number of rabbits born during the n’th month. The
parent of each rabbit born during the n’th month must have been born on or before
the (n — 2)'nd month. Conversely every rabbit living at the end of the (n — 2)'nd
month would have given birth to a rabbit during the n’th month. Thus the number of
rabbits born during the n’th month equals the number of rabbits living at the end of
the (n — 2)’'nd month. Hence F,, = F,,_1 + F),_».
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3. The obvious solution works here.

(define (fib n)
(cond
[(<=n 2) n]
[else (+ (fib (- n 1)) (fib (- n 2)))]

4. The previous solution calculates F;, by calculating Fj,_; and F),_5 independently and
adding them up. Computation of F,,_; in turn involves calculation F, 5. Thus F, _»
is calculated twice, F,_3 thrice, F,,_4 five times and so on... (F,_ is calculated about
F}. times). To speed up the process, we make use of the following observation: It is
very easy to calculate F, and F;,_; if we know the value of F,,_; and F,,_,. Consider
the function h(z,y) = (y,z + y) and observe that

h(Fn—laFn) = (FnyFn—'—Fn—l) - (FnaFn-‘,-l)

Thus applying h to a pair of adjacent fibonacci numbers (thats what the F,’s are
called), gives the next pair of adjacent fibonacci numbers. This is captured by the
following scheme function.

;5 Two adjacent fibonacci numbers
;5 low < high
(define-struct fibpair (low high))

;; next-fib: fibpair -> fibpair
s given a fibpair produces the next fibpair
(define (next-fib fp)
(make-fibpair (fibpair-high fp)
(+ (fibpair-high fp) (fibpair-low fp))
)

Now in order to compute F),, we just need to start with the pair (Fy, Fy) and apply
the function next-fib n — 1 times. This is accomplished by the function below

;; applynextfib : number fibpair -> fibpair
s apply the function nextfib num number of times
(define (applynextfib num fp)
(cond
[(=n 0) fp)



[else (applynextfib (- num 1) (next-fib fp))]
)

Applying next-fib n — 1 times to (Fy, Fy) gives the pair (F,,, Fj,11). It only remains
to extract F},, as done by the scheme function below:

;35 £ib2: number -> number
M returns the n’th fibonacci number
(define (fib2 n)
(fibpair-low (applynextfib (- n 1) (make-fibpair 1 2)))
)

This completes the solution. Another way to rewrite the same solution is as given
below. Here the pair of number old and curr represent the low and high parts of
fibpair.

(define (fibfast n old curr)
(cond
[(=n 0) curr]
[else (fibfast (- n 1) curr (+ old curr))]

)
)
(define (fib3 n)
(cond
[(<n 3) n]
[else (fibfast (- n 2) 1 2)]
)
)
Statistics
Let ay, ..., a, be a sequence of numbers. The mean (denoted x) and the Standard Deviation

(denoted o) are defined through the following formulae:

(a1 +as+ ...+ a,)
n

o = \/(al_“>2+(az—u)2+...+(an_u)2

T

5. (10 pts) Write scheme function mean and stddev which consume lists of numbers and
produce the mean and standard deviation of the input list respectively.



Solution

5. We need to write functions to calculate the length of the list, another to sum up all
the numbers in the list, and a third one to calculate the sum of squares of the numbers
minus a given number. Note how similar the function definitions will be if we write
them!

Instead of writing three different functions we write one function which does all three!
The trick is to find what is common in all the three cases. What we need is to sum
up (x — base)k, where base and k are fixed numbers and z varies through the list.
Remember that £ = 0 will give us 1 for each element of the list. Thus calculating
the number of elements in the list. Putting base = 0 and & = 1 gives the sum of the
numbers in the list. From these two we can calculate the mean. Finally putting k& = 2,
base = mean, we can calculate the standard deviation.

;; sum—power—deviation: list-of-numbers number number -> number
- calculate SUM ( (x - base)’k )
(define (sum-power-deviation lon base k)
(cond
[(empty? lon) O]
[else (+ (expt (- (first lon) base) k)
(sum-power-deviation (rest lon) base k))]

(define (count lon)
(sum-power-deviation lon 0 0))

(define (mean lon)
(cond
[(empty? lon) 0]
[else (/ (sum-power-deviation lon O 1) (count lon))]

)

(define (stddev lon)
(cond
[(empty? lon) 0]
[else (sqrt (/ (sum-power-deviation lon (mean lon) 2) (count lon)))]

)



