Instructions

1. There is a total of 11 problems worth 120 points.

2. You will be marked out of 60 points.

3. You may solve as many problems as you wish.

4. Name your functions exactly as given. You may name any additional functions as you please.

5. You can write the functions using whatever method you want (recursion or higher order functions), unless specifically stated otherwise.

6. Before you start answering the questions, execute

 /home/gmkrishn/setup

 • it will create a directory called “scm-final” in your home directory,
 • create files q1.scm, ..., q11.scm (in scm-final) and launch DrScheme.
 • These files will already have the basic definitions and the some tests as well.
 • To execute the tests, just execute (run-test n) where n is the number of the test. For each test, you will see a true if you passed the test, and a false otherwise.

7. In some problems there are many ways to represent the correct solution. In those cases, the problem statement tells you which of the different representations you should use. Make sure that your programs produce the correct representation. If your program is correct but does not produce the correct representation, you will be penalized 2 points.

8. After you have finished the exam, save your programs and quit scheme. Then type the following in the unix shell

 /home/gmkrishn/submit

 This will email me all your programs. Confirm with me that I have received your email.

Good Luck with the final exam
Scheme builtins

Here are some scheme builtins which might help you in your final exam.

Math

(abs x) | Returns the absolute value of x
(remainder n a) | remainder on dividing n by a
(quotient n a) | quotient on dividing n by a
(even? n) | Is n even?
(add1 n) | returns n+1
(sub1 n) | returns n-1

List Processing

(empty? lst) | Returns true if lst is the empty list
empty | Denotes the empty list
(first lst) | Returns the first element of a non-empty list
(rest lst) | Returns the list obtained by removing the first
(list-ref k lst) | Returns the (k+1)’st element of the list

Higher Order functions

(build-list n f) | Returns (list (f 0) (f 1) ... (f (- n 1)))
(map f lst) | Returns a list obtained by applying f to each element of the list
(filter pred lst) | Returns those elements of lst for which pred holds
(foldr f base lst) | Returns (f x1 ... (f x_{n-1} (f x_n base)))
(foldl f base lst) | Returns (f (f (f base x1) x2) ... x_n)
(apply f args) | Applies the function f to the given list of arguments.
(compose f g) | Returns the function (lambda (x) (f (g x)))

> (quicksort (list 3 5 4 6 1 9) <)
(list 1 3 4 5 6 9)
> (quicksort (list (make-posn 3 4) (make-posn 4 2) (make-posn 1 5))
 (lambda (p q) (< (posn-x p) (posn-x q))))
(list (make-posn 1 5) (make-posn 3 4) (make-posn 4 2))
> (apply (lambda (p q) (+ p (* 3 q))) (list 4 7))
25
Problems

1. Area of a convex polygon - 10 + 10 points

A convex polygon satisfies the following property:
For any point P inside the polygon, joining P to all the vertices of the polygon splits the
inside of the polygon (and only the inside) into triangles.

A polygon is represented in scheme by a list of its vertices in anti-clockwise order. For
example the polygon below is represented by

\[(list \ (\text{make-posn} \ 6 \ 0) \ (\text{make-posn} \ 3 \ 3) \ (\text{make-posn} \ -1 \ 2) \ (\text{make-posn} \ -4 \ 0) \ (\text{make-posn} \ 0 \ -4))\]

Here the central point (in the figure) is the origin.

Problem Write a scheme function `polygon-area` which consumes a list of posn structures,
which represent the vertices of a convex polygon (in anti-clockwise order), and produces the
area of the polygon. You may assume that the origin lies inside the polygon.

If the vertices of a triangle has coordinates $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ then the area of the
triangle is given by the formula.

\[
\frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|
\]

where $|z|$ denotes the absolute value of z.
Bonus Problems

- (5 points) Rewrite `polygon-area` so that it works for any convex polygon, which does not necessarily enclose the origin.

- (5 points) Implement `polygon-area` without using recursion (only higher order procedures). Note: This one is a little tricky, though simple. You have been warned.

2. Human Genome - 5 points

Chromosomes are essentially long sequences of DNA (Deoxy-ribo Nucleic Acid). In case of humans a DNA is one of the following: A (Adenine), G (Guanine), C (Cytosine) or T (Thiamine).

Because of the underlying chemical structure of these DNA, A and T have an affinity for each other, and similarly with C and G\(^1\). In fact the 46 chromosomes in a human cell, come as 23 pairs. Given one chromosome, its complementary pair is obtained by replacing A with T, T with A, C with G, and G with C, respectively.

Problem We will represent a DNA sequence as a list of the symbols ‘A’, ‘T’, ‘C’, ‘G. Write a scheme function `comp-pair` which consumes a DNA sequence and produces its complementary pair.

```
> (comp-pair empty)
empty
> (comp-pair (list 'A 'T 'A 'G 'C 'A 'T 'C 'G))
(list 'T 'A 'T 'C 'G 'T 'A 'G 'C)
```

3. Genome Project - 10 points

One of the problems in the genome project is identifying DNA sequences in chromosomes. This gains importance as there is a high degree of co-relation between having a certain gene and being susceptible to certain diseases. With our representation of a chromosome, the problem translates into searching for sublists in a list.

Problem Write a scheme function `locations` which consumes two DNA sequences (i.e. lists of symbols) called `seq` and `gene`, and produces a list of positions in `gene` where the given sequence `seq` occurs. Note that different occurrences of `seq` in `gene` may overlap.

```
> (define seq (list 'A 'T 'A 'T))
> (define gene (list 'A 'C 'T 'A 'T 'A 'T 'A 'T 'G 'C))
> (locations seq gene)
(list 4 6)
```

\(^1\)A and T form a triple hydrogen bond, while C and G form a double hydrogen bond
4. Continued Fractions - 10 points

An infinite continued fraction is an expression of the form

\[
\frac{N_1}{D_1 + \frac{N_2}{D_2 + \frac{N_3}{D_3 + \ldots}}}
\]

Many numbers like \((\sqrt{2})\) have nice continued fraction expansions. Truncating such an infinite fraction to \(k\)-terms gives a \(k\)-term continued fraction which is of the form

\[
\frac{N_1}{D_1 + \frac{N_2}{\ldots + \frac{N_k}{D_k}}}
\]

Problem Write a scheme function `cont-frac` which consumes two functions from numbers to numbers, `num` and `den` and a number `k` and computes the value of the \(k\)-term continued fraction where \(N_i\) is `(num i)` and \(D_i\) is `(den i)`.

```scheme
> (define (one x) 1)
> (define (two x) 2)
> (add1 (cont-frac one one 20))
1.6180339850173579389731408...
> (add1 (cont-frac one two 10))
1.4142135516460546943041282...
> (add1 (cont-frac two two 10))
1.7320490367775831873905429...
```

The three examples give the golden ratio \(\frac{1+\sqrt{5}}{2}\), \(\sqrt{2}\) and \(\sqrt{3}\) respectively.

5. Linear Recurrence - 10 + 5 points

A sequence of numbers \(T_n\) is defined as:

\[
T_n = \begin{cases}
 a & \text{if } n = 1 \\
 b & \text{if } n = 2 \\
 c & \text{if } n = 3 \\
 \alpha T_{n-1} + \beta T_{n-2} + \gamma T_{n-3} & \text{if } n > 3
\end{cases}
\]

where \(a, b, c, \alpha, \beta\) and \(\gamma\) are some numbers.

Write a scheme function `linrec` which consumes three arguments: a list of 3 numbers (initial) containing \(a, b\) and \(c\) (in that order), a list of 3 numbers (coeff) containing \(\alpha, \beta, \gamma\) (in that order) and \(n\) and produces \(T_n\). Make sure that your function calculates the answers in a reasonable time for moderately large values (up to 4 digit number) of \(n\) as well.
> (define (fib n) (linrec (list 1 1 2) (list 1 1 0) n))
> (fib 13)
233
> (define (test n) (linrec (list 1 2 3) (list 1 1 1) n))
> (test (test 13))
26825477829794683720513650213785132795930196025609032702700639431
936334398746233071935977707466465776374172574170890429011994097657
14746383531553398018706014104868529247845200311320802451816948362
3214262307062743049310251488907884083479277591030244543984843032
5024320699727317975786810389166805941072898405164469629785023178
46986442690766926046976541144006504870093085191183501

Bonus Problem

(5 points) Generalize the above program as follows: *initial* and *coeff* are arbitrary lists of numbers of the same length. If \(k \) is the length of the two lists, then the sequence \(T_n \) is a \(k \)'th order linear recurrence. For \(1 \leq n \leq k \), the value of \(T_n \) is given by the *initial* list. For larger values of \(n \) use the recurrence

\[
T_n = \sum_{i=1}^{k} \alpha_i T_{n-i}
\]

where the *coeff* list contains \(\alpha_1, \alpha_2, \ldots, \alpha_k \) (in that order). Note that the original problem corresponds to \(k = 3 \).

> (define (pow3 k) (linrec (list 1 0 0) (list 0 0 0 3) (* 4 k)))
> (pow3 6) ; gives 3^n
729

6. **Equality of Sets - 10 points**

\(=\), \(\mbox{boolean}=?\) and \(\mbox{symbol}=?\) can only be used to check whether two numbers or boolean values or symbols are the same. Scheme has a more powerful keyword called \(\mbox{equal}=?\). \((\mbox{equal}=? x y)\) returns true if \(x\) and \(y\) are the same. This works not only for all atomic data but also for structures (it checks if corresponding fields are equal) as well as lists (same length, and equal elements in corresponding positions).

Problem A set is represented by a list containing the elements of the set. Hence the order in which the elements of the set appear in the list is irrelevant. The elements of a set can be of arbitrary type i.e. numbers, symbols, booleans, structures, lists (of arbitrary depth). Hence two sets are equal exactly when the lists representing the sets have exactly the same elements, but possibly in a different order. Write a scheme function \mbox{equal-set=} which consumes two sets and checks if they are equal. You may assume that every element appears only once (since we are representing a set).
> (equal-set? (list 1 4 'a 3) (list 'a 3 1 4))
true
> (define seta (list (make-posn 5 4) 'a 6)
> (define setb (list 'a (make-posn 4 5)) 6)
> (equal-set? seta setb)
f
c

7. Composing Functions - 10 points

Scheme provides a builtin `compose` which takes 2 or more functions as arguments and returns a function which is the composition of these. For example `(compose sqr add1 (lambda (x) (* 2 x)))` represents the function which on input y returns `(sqr (add1 (* 2 y)))`.

Problem Write a scheme function `composition` which takes a list of functions `lof` and a list of multiplicities (which are non-negative numbers) `lom` and returns a function which represents the composition of all the given function (with the corresponding multiplicities).

Assume the following:

- the function compositions make sense, i.e. types match.
- all the functions take one argument.
- the list of functions and the list of multiplicities have the same length.

Just like `compose` your function should apply the functions from the right to the left, i.e. functions towards the end of list get applied earlier.

> (define f (composition (list first rest) (list 1 1)))
> (define g (composition (list first rest) (list 1 3)))
> (f (list 1 2 3 4 5 6))
2
> (g (list 1 2 3 4 5 6))
4

8. n-tuples - 10 points

Write a scheme function `tuples` which consumes a list of lists and returns the list of all tuples where the first element comes from the first list, second element from the second list and so on.

The scheme function `allpairs` which generates all pairs is given as a starting point.

> (tuples (list (list 0 1) (list 'a 'b) (list 'x 'y)))
(list (list 0 'a 'x) (list 0 'a 'y)
 (list 0 'b 'x) (list 0 'b 'y)
 (list 1 'a 'x) (list 1 'a 'y)
The list of tuples should be generated in the lexicographic order, i.e. the last element of the tuple should change fastest and the first element should change the slowest, and the coordinate should change in the order in which the elements of the corresponding list are given.

9. Choosing k out of n - 10 points

Problem Write a scheme function choose which consumes a list lst (of numbers and symbols) and a number k and produces a list of all ways of choosing k elements from the list. You may assume that all the elements of the list are either numbers or symbols.

> (choose (list 1 2 3 4 5) 3)
(list (list 1 2 3) (list 1 2 4) (list 1 2 5) (list 1 3 4)
 (list 1 3 5) (list 1 4 5) (list 2 3 4) (list 2 3 5)
 (list 2 4 5) (list 3 4 5))

Note that (list 1 2 3) represents choosing 1, 2 and 3 from the list. Here (list 1 2 3) and (list 1 3 2) represent the same choice. Ensure that in each choice, the numbers/symbols should appear in the order in which they appear in the list. Also, make sure that the choices themselves are ordered lexicographically.

Hint: Consider all the ways of choosing k elements where the first element is present. It is equivalent to choosing k-1 elements from the remaining list. Similarly choosing k elements where the first element is not present is equivalent to choosing k elements from the remaining list. Be sure to handle the boundary cases (k < 0, k = 0, k = n, k > n) where n is the length of the list.

10. Balanced Trees - 10 points

A binary tree is said to be balanced if for every node the number of nodes in its left subtree and right subtree differ by at most 1 (i.e. difference should be 0, -1, or +1).

Problem Write a scheme function balanced? which consumes a binary tree and returns true if the binary tree is balanced.

Hint: Write a helper function which consumes a binary tree and returns false if it is not balanced and the total number of nodes in the tree if it is balanced.

11. Binary Search Trees - 10 points

Problem Write a scheme function isbst? which consumes a binary tree which contains numbers as data in every node, and checks if the given tree is a binary search tree.

Hint: Tree traversals.