
Project 3

CMCS 22620/32620, Spring 2004

Assigned: May 5, 2004
Due: May 12, May 19, May 26, June 2 (all 2004)

1 Introduction

This is the final project. It consists of four separatemilestones. You have one week for
each milestone. At the end of milestone 2 you should have a compiler that compiles
simple test examples into correctly working executables. The remaining two mile-
stones will enhance the compiler to deal with register spills and also add a simple
optimizer.

2 Getting the compiler to work — Milestones 1 & 2

The first two milestones are:

• liveness analysis and interference graph construction (fileliveness.sml )

• graph coloring (filecolor.sml )

Which of these tasks you tackle first is up to you (although I recommend doing
liveness first). Your solution to the first part (as chosen by you) is due on May 12, the
second on May 19. At this point your compiler should be able to correctly compile the
examples given in thetest/ directory.

2.1 The runtime system

I provided a simple implementation of a runtime system for Minijava inrt/mj-rt.c .
You need to compile this file using the C compiler:

cd rt
cc -c -O2 mj-rt.c
cd ..

The Minijava compiler must be invoked from the directory that contains the SML
source code, i.e., the same directory where you run the SML compiler. The reason
for this is that it looks for a filert/mj-rt.o . (You can change this by editing
main.sml appropriately.)

1



3 Cleaning up — Milestones 3 & 4

The remaining two milestones can be done in any order you choose. They will be due
on May 26 and June 2, respectively. Here are the tasks:

• Rewrite the instruction stream to deal with spills (filerewrite.sml ). This
involves addingload- andstore-instructions before and after instructions which
use temporaries that got spilled, as well as the introduction of new temporaries.

• Implement a simple optimizer for the tree language. This optimizer is supposed
to walk over aLinTree.stm list and optimize theLinTree.exp trees con-
tained therein (filesimplify-tree.sml ). You should implement simple
constant-folding and algebraic simplifications such as:

x + 0 = x

(x + c1) + c2 = x + (c1 + c2)
x× 0 = 0
x× 1 = x

Take commutativity- and associativity-rules into account. (But be sure not to
wind up with an infinite loop in the optimizer!)

(This is an open-ended project. To give you an idea of how much effort I am
looking for, note that my sample implementation is 129 lines in total. It han-
dles one case on roughly 2 lines of source code, and in addition to rewriting
LinTree.exp values it also deals withCJUMPs whose conditions are con-
stant.)

4 Instructions

4.1 Files

Download the filemj-project3.tgz from the course web page. This is a com-
pressed tarball containing the Minijava compiler’s entire source code, with 5 files
(cg.sml , liveness.sml , color.sml , rewrite.sml , andsimplify-tree.sml )
reduced to mere skeletons to be filled in by you. You should first substitute your solu-
tion to Project 2 for filecg.sml and then start working on the remaining four.

Notice that I have again improved the frontend of the compiler to the point that it
now also handlesstatic methods. (With this in place, themain method is no longer a
special hack but just another static method that is public, returns nothing, and takes an
array of String as its argument.)

4.2 SML/NJ

To get started, the first step is to see whether you have access to a working SML/NJ
installation. After downloading, uncompressing, and untaring said tarball, you should

2



end up with a directory namedminijava containing the source files. Go to that
directory and fire up SML/NJ by typingsml at the shell prompt. You should see
a greeting from SML/NJ and a new input prompt. At this prompt, typeCM.make
"minijava.cm"; . The program should compile.

As you make your modifications, you can re-issue theCM.make command (with-
out quitting thesml session in between). The SML/NJ compilation manager will take
care of recompiling only what’s necessary.

4.3 The test driver

Among other things the tarball contains two files,compile.sml andmain.sml ,
which implement a test driver for the Minijava compiler. This lets you build a stand-
alone version and invoke it in a way reminiscent of invoking a C compiler.

The driver understands the following options:

-S Compile to assembly code (.s -file) and stop. Neither assembler nor linker will be
invoked.

-c Compile to object code (.o -file) and stop. The linker will not be invoked.

-o name Arrange for the executable to be written to filename. If the source file is
foo.mj , then the default for this isfoo.

Notice that if neither-S nor -c are given, the Minijava compiler must have access
to a filert/mj-rt.o containing the Minijava runtime system.

To build the standalone version of the Minijava compiler, run the following com-
mand from your shell prompt:

ml-build minijava.cm Main.main mjc

This will create a “heap image” namedmjc.ppc-darwin . The compiler can
then be invoked using

sml @SMLload=mjc my-program.mj

5 Handing it in

To hand in your solution(s), send the file you modified as an e-mail attachment to both
the instructor and the TA using the following e-mail addresses:

instructor blume (at) tti (hyphen) c (dot) org
TA cysong (at) cs (dot) uchicago (dot) edu

If you make changes to more than one file, then bundle all your files as a tarball and
attach that to your e-mail.

3



6 Supporting code

There are a number of new source files which I provided for you to use. In particular,
you need to familiarize yourself with the implementation of a general graph data struc-
ture ingraph.sig andgraph.sml . Flowgraphs are described inflowgraph.sml .
The code for constructing the flowgraph from the list of instruction is inmakegraph.sml .
(See the textbook for an explanations of these.) The register allocator is implemented
in ra.sml . It invokes the graph coloring phase and the spill rewrite phase.

4


