Project 2

CMCS 22620/32620, Spring 2004

Assigned: April 21, 2004
Due: May 3, 2004

1 Introduction

The purpose of this project is to write the instruction selection phase for our Mini-
java compiler. The input consists ofti@ace (seetracetree.sml), the output is a
sequence of machine instructions (geen.sml). At this point we still assume an
infinitely large register file, i.e., we continue to usenporariegseetemp.sml).

2 Instructions
2.1 Files

Download the filemj-project2.tgz from the course web page. This is a com-
pressed tarball containing the Minijava compiler’s frontend, the translation to trees, the
tree linearizer, the conversion to basic blocks, and the trace scheduler. There is also
a new moduldrame.sml which deals with various aspects of the PowerPC stack
frame as well as its register file. It will be important for you to read the comments in
this file and understand the purpose of each component.

Notice that | have improved the frontend of the compiler to the point that the fol-
lowing things are now handled:

e checking for null pointers where necessary
e checking array bounds
e checking for violations of the subtyping invariant in array assignments

e support forstatic instance variables

As a result, there are some subtle changes to the interface of (among others) the
translatemodule. Keep this in mind when comparing it to your solution to Project 1.

2.2 SML/NJ

To get started, the first step is to see whether you have access to a working SML/NJ
installation. After downloading, uncompressing, and untaring said tarball, you should
end up with a directory nameahinijava containing the source files. Go to that
directory and fire up SML/NJ by typingml at the shell prompt. You should see
a greeting from SML/NJ and a new input prompt. At this prompt, tgid.make
"minijava.cm"; . The program should compile.

As you make modifications tog.sml , you can re-issue theM.make command
(without quitting thesml session in between). The SML/NJ compilation manager will
take care of recompiling only what's necessary.

2.3 The test driver

Among other things the tarball contains two new filg@npile.sml andmain.sml
which implement a test driver for the Minijava compiler. In particular, you can now
build a stand-alone version and invoke it in a way reminiscent of invoking a C compiler.
However, given that we do not yet have a register allocator, it is curredlyiredto
specify the-S command line option, causing compilation to stop after the generation
of assembly code.

To build the standalone version, run the following command from your shell prompt:

ml-build minijava.cm Main.main mjc

This will create a “heap image” nameaxjc.ppc-darwin . The Minijava com-
piler can then be invoked using

sml @SMLload=mjc -S my-program.mj

A successful run of the Minijava compiler will leave a file calleg-program.s
containing the assembly code corresponding to the given Minijava program. Currently
the output will not really be legal assembly code because there is no register allocator
and names of temporaries appear in place of register names.

3 Handingitin

You should only have to make changes to ¢éiggsml . To hand in your solution, send
this file as an e-mail attachment to both the instructor and the TA using the following

e-mail addresses:
instructor blume (at) tti (hyphen) ¢ (dot) org

TA | cysong (at) cs (dot) uchicago (dot) edu
If you make other changes, then bundle all your files as a tarball and attach that to your
e-mail.

