
Project 1

CMCS 22620/32620, Spring 2004

Assigned: April 7, 2004
Due: April 19, 2004

1 Introduction

The purpose of the first project is twofold. The main goal is to get a working imple-
mentation of thetranslatemodule. This module contains functions which get invoked
by the type checker / semantic analyzer. Their purpose is to generate expressions and
statements in ourTree language which correspond to a given Minijava program. The
second goal is to (as a side effect of writing the translator) familiarize yourself with the
structure of the type checker itself.

2 Instructions

2.1 Files

Download the filemj-project1.tgz from the course web page. This is a com-
pressed tarball containing the Minijava compiler’s frontend as well as a template for
implementing thetranslatemodule. Here is a roadmap for understanding the purpose
of each file:

symbol.sml Definition of abstract type representing symbols (i.e., Minijava identi-
fiers).

ast.sml Type definitions for abstract syntax trees. Those trees are generated by the
parser.

minijava.grm Theml-yacc grammar for Minijava.

minijava.lex Theml-lex specification for the Minijava lexer.

parse.sml Glue code putting together lexer and parser. For testing purposes this
file currently also contains the invocation of the semantic analyzer.

types.sml Definitions of the types of the values that the compiler uses to internally
represent Minijava types. Such values are used by the semantic analysis phase.

label.sml Definition of an abstract type representing labels in assembly code.

1

temp.sml Definition of an abstract type representing an infinite supply of “virtual
registers” calledtemporaries. Temporaries will later get mapped to a finite set of
physical registers by the register allocator.

semant.sml This file contains the semantic analyzer. Semantic analysis involves
type checking as well as verifying other static constraints that valid Minijava pro-
grams have to satisfy. (For example,continue statements must occur within
loops, each reference to a Minijava label must be within the so-labeled state-
ment, variable references must be within scope,. . .) The semantic analyzer also
containstranslation stubs—calls of functions provided by thetranslatemod-
ule. Their purpose is to generate the intermediate representation of the program
which is used by the backend. (From the point of view ofsemant.sml , the
intermediate form is abstract: a program consists of a list offragments, each
fragment representing the code of one method or the runtime data for one class.)

tree.sml This file defines theTree language. Trees are used to represent exe-
cutable code.

layout.sml Definition of some “magic numbers” related to memory layout and
value representation. These numbers are used by thetranslatemodule.

translate.sml This is thetranslatemodule. The file, as given, contains a template
which is to be filled in by you. Find expressions of the formraise Fail ”fill this
in. . .” , read the comments, and replace the expressions with whatever it takes to
implement the required functionality. In addition to that you should also try and
improve the implementation of functioncond as suggested by the comment that
precedes it.

minijava.cm This is the CM description file for the Minijava compiler project.
It basically lists your source files and the names of modules to be externally
visible. In addition to that, it specifies which external libraries are being used. In
particular, we have

$/basis.cm The Standard ML Basis Library. Think of this as the “libc of
SML.” For detailed information, seehttp://www.standardml.org/Basis .

$/ml-yacc-lib.cm Theml-yacc helper library. (The code generated by
ml-yacc contains references to functionality exported by this library.)

$/smlnj-lib.cm The SML/NJ library contains implementations of a num-
ber of useful data structures. In particular, we are usingred-black trees
to representfinite mapsandfinite sets. Among other things, finite maps
are convenient for implementingfunctional environments. (Look at, e.g.,
Symbol.Map defined insymbol.sml .)

$smlnj/viscomp/basics.cm To avoid reinventing certain wheels, we pull
in some functionality from the SML/NJ compiler’s implementation itself.
In particular, we make used of modules dealing with input from source
files, tracking of region information, and generating error messages. (The
corresponding modules areSource , SourceMap , andErrorMsg .)

2

2.2 SML/NJ

To get started, the first step is to see whether you have access to a working SML/NJ
installation. After downloading, uncompressing, and untaring said tarball, you should
end up with a directory namedminijava containing the files listed above. Go to
that directory and fire up SML/NJ by typingsml at the shell prompt. You should see
a greeting from SML/NJ and a new input prompt. At this prompt, typeCM.make
"minijava.cm"; . The program should compile.

2.3 Testing

After CM.make has succeeded in compiling the code you can now proceed to test it.
In particular, the functionParse.parse will take the name of a source file contain-
ing Minijava code, parse it, and send it to the semantic analyzer. In the beginning
you will get failure almost immediately. That is because of the missing blanks in
translate.sml .

Once you think you have completedtranslate.sml , it will be useful to test
the compiler in earnest. Write a few sample Minijava programs and feed them to
Parse.parse . Once this goes through without error, it will be useful to write a
little module for pretty-printing trees of theTree language. Add an interface to the
translatemodule that lets you look at the trees you generate.

3 Handing it in

You should only have to make changes to filetranslate.sml . To hand in your
solution, send this file as an e-mail attachment to both the instructor and the TA using
the following e-mail addresses:

instructor blume (at) tti (hyphen) c (dot) org
TA cysong (at) cs (dot) uchicago (dot) edu

If you make other changes, then bundle all your files as a tarball and attach that to your
e-mail.

3

