
(Not Quite) Minijava

CMCS22620, Spring 2004

April 5, 2004

1 Syntax

program → mainclass classdecl∗

mainclass → classidentifier{ public static void main (String [] identifier) block}
classdecl → classidentifier(extendsidentifier)opt { instvardecl∗ methoddecl∗ }

instvardecl → publicopt type var(, var)∗ ;
var → identifier([])∗

methoddecl → publicopt rtyp identifier(formal (, formal)∗) block
rtyp → type | void

formal → type var
block → { (locvardecl; | statement)∗ }

locvardecl → type locvar(, locvar)opt

locvar → var (= init)opt

init → exp | { init (, init)∗ }
statement → block

| if (exp) statement(elsestatement)opt

| while (exp) statement
| do statementwhile (exp) ;
| for (forinit ; expopt ; explistopt) statement
| exp;
| return expopt ;
| ;
| identifier: statement
| break identifieropt ;
| continue identifieropt ;

forinit → explistopt

| locvardecl

1

explist → exp(, exp)∗

exp → exp binop exp
| (exp.)opt identifier(explistopt)
| integer
| true | false | this | null
| new identifier()
| new type[exp]
| uop exp
| exp? exp: exp
| (exp)
| lvalue
| lvalue= exp

binop → && | || | < | > | <= | >= | == | != | + | - | *
uop → ! | -

lvalue | identifier
| exp. identifier
| exp[exp]

type → int | boolean | identifier | type[]
identifier → . . .

integer → . . .

2 Classes and subtyping

The language hasno overloading; each class has at most one method by any given
name. LetB extendA. If A has a methodf andB wants to overridef with its own
version, then the type ofB’s f must be asubtypeof A’s f .

For f ’s type to be a subtype ofg’s type,f andg must take equal number of argu-
ments. Iff has a result, then so mustg (and vice versa), and the type off ’s result must
be a subtype of the type ofg’s result. Moreover, the type of each ofg’s arguments must
be a subtype of the type of the corresponding argument off . (Notice the role reversal
here! This is calledcontravariance.)

A class typeB is a subtype of another class typeA if B directly or indirectly
extendsA. Otherwise, an array typet[] is a subtype of another array typeu[] if and
only if t is a subtype ofu. (This is, in some sense, a design bug in the Java language
since it does not guarantee safety. To restore safety, assignment to arrays often require
runtime type tests.)

3 Expressions

constants Minijava programs can use the following constants:

boolean true, false

numerical integer

array and object null

2

this refers to the “current” object—the objecto in the method callo.f(e1, . . . , ek)
that invoked the current method

identifier an identifiern refers to the variablen that is currently in scope; ifn is an
instance variable (and therefore declared in the class corresponding to the current
object), thenn is equivalent tothis. n; this construct is anlvalueand therefore
can appear on the left-hand side of the assignment operator

selection the syntaxo. n denotes access to an instance variablen in objecto; which
(of possibly many) instance variables by the namen is meant depends on the
compile-timetype of expressiono; this construct is anlvalue

array length the syntaxa.length refers to the length (number of elements) of an
arraya; although syntactically identical to selection and therefore anlvalue, this
construct is read-only

array subscript the syntaxa[i] refers to thei-th element of arraya; this construct is
an lvalue

self method call the syntaxf (e1, . . . , ek) (wheref is an identifier) is equivalent to
this. f (e1, . . . , ek)

method invocation the syntaxo. f (e1, . . . , ek) invokes the method namedf in ob-
jecto; which (of possibly many) methods by the namef is meant depends on the
class thato was created from, i.e., theruntimetype ofo

object creation an expression of the formnew c() returns a freshly allocated object
of runtime typec (c must be an identifier referring to a class); all instance vari-
ables of the object are cleared (integers become 0, booleans becomefalse, arrays
and objects becomenull)

array creation an expression of the formnew t[l] returns a freshly allocated array
whose elements are of typet and whose size (number of elements) isl; all ele-
ments are cleared (integers become 0, booleans becomefalse, arrays and objects
becomenull)

binary operations In general, binary operations have the forme1⊗e2 where⊗ is one
of:

• short-circuiting logical and:|| — boolean arguments and results

• short-circuiting logical or:&&— boolean arguments and results

• equality tests:== != — arbitrary (matching) argument types, boolean re-
sult; in case of arrays and objects the test is for object identity (memory
address equality)

• comparisons:< > <= >= — integer operands, boolean result

• addition and subtraction:+ - — integer operands and result

• multiplication: * — integer operands and result

3

These operators are listed in order of increasing precedence.

unary operations There are two unary operations:

• boolean negation:! e — boolean argument, boolean result

• arithmetic negation:- e — integer argument, integer result

conditional expression An expression of the forme1?e2: e3 evaluates the boolean
condition e1 and depending on the outcome evaluates eithere2 (when true)
or e3 (when false) and returns the respective value; the expression that is not
needed does not get evaluated; notice thate1&&e2 ande1|| e2 are equivalent to
e1?e2: falseande1?true: e2, respectively.

assignment l=e assigns the value ofe into the location denoted by lvaluel; the result
(which is the value that was assigned) has the same type asl.

4 Statements

blocks Blocks are sequences of statements and variable declarations enclosed in curly
braces{}. The scope of each variable declaration extends from the point of
declaration until the end of the block.

conditional The conditional statement has a condition, a “then” branch, and an op-
tional “else” branch. It works like in C or Java.

while loop The while -loop has a condition and a body. It alternates between eval-
uating the condition and executing the statement (beginning with the condition)
as long as the condition is found to betrue. If during the execution of the loop a
continue statement is executed, then control is passed directly directly to the
condition, thus starting a new round.

do loop The do-loop is like thewhile -loop, except execution starts with the body,
so the body gets executed at least once. Acontinue statement jumps back to
the beginning of the body, thus starting a new round.

for loop Thefor -loop consists of an optional initializer, an optional condition, an op-
tional update part, and a body. The initializer is evaluated once, possibly declar-
ing some loop-local variables which are available in all three other parts. Then
the loop starts executing beginning with the condition followed by the body, then
the update part (if present), and finally back to the condition. A missing condi-
tion is treated astrue. The update part consists of a list of expressions which get
evaluated for effect. (Usually these are used to update loop variables originally
declared or initialized by the initializer.) The loop stops after the condition is
found to befalse for the first time. Acontinue statement jumps back to the
update part, thus starting a new round.

expression An expression can be used where a statement is expected by simply fol-
lowing it with a semicolon.

4

return The return statement terminates the current method. If the return type of
the method isvoid , thenreturn does not accept an expression. Otherwise
return requires an expression which is used to specify the return value of the
method.

empty A semicolon by itself is an empty statement which does nothing.

labeled Any statements can follow l: wherel is the name of a label. The label can
be used bybreak - andcontinue -statements withins to refer tos.

break A break -statement without a label terminates the innermost enclosing loop
(while , do , or for) within the current method. (Such a loop must exist for the
break to be legal.) Abreak -statement carrying a labell terminates the inner-
most enclosing statements that is labeled withl. If there is no such statement,
thenbreak l; is illegal.

continue All continue -statements refer to an enclosing loop statement within the
current method. If no label was specified, that loop is the innermost enclosing
loop (which has to exist); if labell was given, the statement refers to the inner-
most enclosing loop labeled withl (which has to exist). The precise semantics
of continue depends on the kind of loop it refer to. See the description of
while , do , andfor for details.

5

