
Topics Laundry List

CMCS22620, Spring 2004

March 29, 2004

• MiniJava

• type checking, recursive definitions, symbol tables

– subtyping

– structural equivalence vs. name equivalence

• representation of objects and values

– scalars

– arrays

– Pascal records or Cstruct s

– C union s

– discriminated unions (e.g., MLdatatype s

– objects

– closures (e.g., ML’s first-class function values)

• stack vs. heap vs. static allocation

• translation to trees

– high-level optimizations

– canonicalization

• runtime environment

– calling conventions

1



∗ parameter-passing conventions

∗ result-passing conventions

∗ activation records and stack layout

– more stack organization

∗ frames

∗ without nested functions

∗ with nested functions

∗ with local variables that “outlive” their function invocation (e.g.,
because of an address-of operator or first-class functions)

∗ with objects and methods

• machine instructions

– CISC vs. RISC

– registers

– addressing modes

• instruction selection

– “maximal munch”

– dynamic programming

• basic blocks and traces

• simple local optimizations (e.g., intra-block value numbering)

• flow analysis

• global (flow-based) optimizations

• loops and dominators, loop-based optimizations

• other intermediate languages

– static single assignment (SSA) form

– continuation-passing style (CPS)

– inter-procedural optimizations

2



• pipelining and scheduling

• branch prediction

• liveness analysis

• (graph-coloring) register allocation

– with coalescing

• generating assembly code

• garbage collection

• parser error recovery(?)

3


