
A quick introduction to SML

CMSC 15300

April 9, 2004

1 Introduction

Standard ML (SML) is afunctional language(or higher-order language) and we will use it in this
course to illustrate some of the important concepts. We will only use a limited set of core features in
this course, SML is also used in some of the advanced courses (e.g., the compiler sequence 22610-
22630), where the full language comes into play. The purpose of this note is to explain how to run
SML/NJ to test the small code examples that you write.

2 Running SML/NJ

The department’s Linux machines and the MacLab Macs have SML/NJ installed. You can also
download the system, which is open source, fromhttp:smlnj.org .

You run SML from a shell (the Terminal application on MacOS X). At the command prompt,
type the commandsml, which will start up the SMLread-eval-printloop (also known as thetop-
level loop):

% sml
Standard ML of New Jersey v110.45 [FLINT v1.5], February 13, 2004
-

The “- ” symbol is the SML prompt. In these examples, we follow the convention of typesetting the
user’s input initalics . To exit the

When we type an SML expression or definition at the SML prompt, it is compiled, evaluates,
and its result is printed. For example:

- 5-3 ;
val it = 2 : int
- 3=4 ;
val it = false : bool
-

Note that the semicolon terminates the expression. We can alsobind names to the result of expres-
sions:

- val a = 5-3;
val a = 2 : int
- val b = a=2;
val b = true : bool
-

We can also define named functions at the command line:

- fun inc (x : int) = x+1;
val inc = fn : int -> int
-

To exit the top-level loop, type theend-of-filecharacter (typically Control-D).

% sml
Standard ML of New Jersey v110.45 [FLINT v1.5], February 13, 2004
- ˆD
%

2.1 Using files

You can load SML code from a file, by applying the “use ” function to a string that specifies the
file. For example, assume that the filefoo.sml contains the following code:

val x = 1+2;
val y = 17;

The we can load the file as follows:

- use "foo.sml";
[opening foo.sml]
val x = 3 : int
val y = 17 : int
val it = () : unit
-

Note that loading a file this way has the same effect as if you had directly entered the contents of
the file at the read-eval-print loop (with the exception that the variableit is bound to “() ”).

2

3 A tour of SML

In this section, we give a brief introduction to SML. SML is avalue orientedlanguage, by which
we mean that variables name values (not storage locations).

3.1 Basic types and values

The basic types of SML include Booleans (bool), integers (int), and strings (string). The two
values of typebool aretrue andfalse , and the primary operator isnot .

- not true;
val it = false : bool
-

SML also has conditional operatorsorelse andandalso , which like C’s|| and&&operators,
short-circuit evaluation.

Integers are written in decimal notation, with negative numbers are designated by˜ . For exam-
ple:

- 3-5;
val it = ˜2 : int
-

3.2 Tuples

SML also supports tuples as first-class values. We use parentheses to construct tuple values:

- val a = ();
val a = () : unit
- val b = (1);
val b = 1 : int
- val c = (false, true);
val c = (false,true) : bool * bool
- val d = (a, b, c);
val d = ((),1,(false,true)) : unit * int * (bool * bool)
-

Note that the type of empty tuples is calledunit and that, unlike the treatment of tuples in the
textbook, the tuple of a single element has the same type as the element itself. Tuple types are
constructed using the “* ” operator. Note also, that tuples can contain tuples as elements (e.g., the
definition of d above). SML defines a family of projection functions (#1 , #2 , ...) for extracting
elements of tuples. Continuing the example from above:

3

- #2 d;
val it = 1 : int
- #3 d;
val it = (false,true) : bool * bool
- #1 it;
val it = false : bool
-

3.3 Functions

Functions in SML are defined using the syntax

fun f param = expression

wheref is the name of the function,param is the function parameter, andexpression is the
body of the function. For example, a function that doubles its argument is written as:

- fun twice (x : int) = x+x;
val twice = fn : int -> int
-

The “-> ” symbol is the function type constructor. This operator associates to the right; for example,

int -> bool -> unit

and

int -> (bool -> unit)

are the same type (a function that takes an integer and returns a function from bool to unit). Function
application is by juxtaposition, although one is free to add parentheses around the argument:

- twice 2;
val it = 4 : int
- twice (3);
val it = 6 : int
-

Function application associates to the left.

Functions can take tuples as arguments, which is one way of writing functions with multiple
arguments:

- fun max (a : int, b : int) = if (a < b) then b else a;
val max = fn : int * int -> int
-

While max looks like a function of two arguments, SML treats it as a function of one argument that
happens to have tuple type:

4

- val x = (1, 2);
val x = (1,2) : int * int
- max x;
val it = 2 : int
- max (3, 4);
val it = 4 : int
-

We can also write functions of multiple arguments ascurried functions:

- fun min (a : int) (b : int) = if (a < b) then a else b;
val min = fn : int -> int -> int
-

We can also write functions that take functions as arguments:

- fun f (g : int -> int -> int) (x : int, y : int) = g x y;
val f = fn : (int -> int -> int) -> int * int -> int
- f min (3, 4);
val it = 3 : int
-

5

