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Abstract

To guarantee  execution, Java and other strongly typed lan-

guages require bounds checking of array accesses. Because 

bounds checks may raise exceptions, they block code motion of

instructions with side effects, thus preventing many useful code

optimizations, such as partial redundancy elimination or instruc-

tion scheduling of memory operations. Furthermore, because it is

not expressible at  level, the elimination of bounds checks

can only be performed at run time, after the  program is

loaded. Using existing powerful bounds-check optimizers at run

time is not feasible, however, because they are too heavyweight for

the dynamic compilation setting.

ABCD is a light-weight algorithm for elimination of &ray

 Checks on Demand. Its design emphasizes simplicity and

efficiency. In essence, ABCD works by adding a few edges to the

SSA value graph and performing a simple traversal of the graph.

Despite its simplicity, ABCD is surprisingly powerful. On our

benchmarks, ABCD removes on average 45% of dynamic bound

check instructions, sometimes achieving near-ideal optimization.

The efficiency of ABCD stems from two factors. First, ABCD

works on a  representation. As a result, it requires on av-

erage fewer than 10 simple analysis steps per bounds check. Sec-

ond, ABCD is demand-driven. It can be applied to a set of fre-

quently executed (hot) bounds checks, which makes it suitable for

the dynamic-compilation setting, in which compile-time cost is

constrained but hot statements are known.

1 Introduction

The advent of safe mobile computing in general, and Java in par-

ticular, has brought about two significant changes for optimizing

compilers. First, type safety requires expensive run-time seman-

tic checks (e.g., bounds checks, null checks, type checks, etc.).

Second, because the mobile  must be verifiably 

when it is loaded, the optimizer can remove semantic checks from

 only at run time. This paper addresses the problem of

eliminating redundant bounds checks using lightweight techniques

suitable for the time-constrained dynamic-compilation setting.
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Bounds checks cause programs to execute slower for two rea-

sons. One is the cost of executing the bounds checks themselves

since they can occur quite frequently and involve a memory load

of the array length and two compare operations. Even more impor-

tantly, the presence of bounds checks greatly limits the application

of code optimizations. Precise exception semantics (as in Java) re-

quires that all code transformations preserve the program state at an

exception point, and also the order in which exceptions occur. As

a consequence, the application of traditional optimizations must be

restricted to prevent side-effect-causing instructions from moving

across any exception points. Since the exception points introduced

by array bounds checks can be frequent, the scope over which 

timizations are applicable can be severely restricted.

When designing optimizations for Java, we face two conflicting

goals: the optimization algorithm must  yet general enough
to globally  bounds checks that are fully redundant, or even

partially redundant. The following observations provide insight

into meeting the challenge for keeping the cost of dynamic opti-

mization low:

We should employ demand-driven-analysis techniques since

they are highly suitable for dynamic optimization. 

driven analysis can be used to focus attention on “hot” bounds

checks; i.e., the bounds checks with the highest execution fre-

quencies. Furthermore, demand-driven analysis is well suited

to dealing with incremental updates of data flow information

after program transformations because it sidesteps the need

for expensive initialization phases needed in exhaustive anal-

yses.

We should develop algorithms that reuse representations that

are commonly used in compilers. Our approach in this work

is to start with SSA form  (i.e., we assume it to

be already available) and develop an algorithm that works by

simple traversals of a cheaply computable extension of the

SSA graph.

Many of the existing algorithms for array-bounds-check elim-

ination are heavyweight (e.g., those based on theorem provers

 and are therefore not suitable for de-

ployment in a dynamic-optimization environment. Some simpler

algorithms (e.g., those based upon value-range analysis 

Pat95,  cannot eliminate partially redundant checks. 

gorithms that can eliminate partial redundancy  

 operate upon dense program representations

(e.g., the control flow graph) and rely upon exhaustive iterative data

flow analyzers. Thus, they, too, do not meet our 

time requirements.

In this paper, we introduce a new algorithm, called ABCD, for
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elimination of array bounds checks on demand. The ABCD algo-
rithm makes the following contributions:

1. Sparse Representation:ABCD uses a novel sparserepre-
sentation called the inequality graph, which is built from
an extended SSA representation. This representation can be
cheaply constructed from a given SSA representation of the
program. We will see that the inequality graph representation
is powerful enough to enable all array-bounds checks to be
eliminated from the BubbleSort program in Figure 1. (To the
best of our knowledge, no other existing Java compiler can
fully eliminate all the bounds checks in this example.)

2. Demand-Driven Analysis:ABCD employs a demand-driven
approach in which the algorithm proceeds by propagating
inequality assertionsthat need to be verified to eliminate a
bounds check. Therefore, the optimization can be performed
incrementallyby starting with the “hot” bounds checks.

3. Generality:The effectiveness of ABCD stems from its ability
to remove both fully and partially redundantchecks. Through
simple traversals of the sparse inequality graph represen-
tation, our algorithm is able to locate insertion points for
checks required for eliminating partial redundancy. To re-
main within the tight compile-time constraints of a dynamic
compiler, ABCD exploits recent results in redundancy elimi-
nation, which show how simple profile-based algorithms can
achieve nearly complete removal of redundancies [BGS98].

For the sake of efficiency, the assertion checking (theo-
rem proving) is restricted to the five classes of “constraint-
generating” statements described in Section 2.

4. Empirical evaluation:Our experience shows that, despite its
simplicity, ABCD is efficient, effective, and simple to imple-
ment. We have implemented ABCD in the Jalapeño optimiz-
ing compiler [BCF+99]. Our results show that ABCD re-
moves on average 45% of all dynamic bounds checks, while
performing fewer than 10 analysis steps per bound check.

The rest of the paper is organized as follows. Section 2 gives
an overview of ABCD. Section 3 presents our sparse program rep-
resentation. Section 4 describes the constraint system used for de-
tecting redundant checks and Section 5 shows how to solve the con-
straint system to remove fully redundant bounds checks. Section 6
extends the removal to partially redundant bounds checks. Sec-
tion 7 outlines possible extensions to the ABCD algorithm. Sec-
tion 8 presents experimental evaluation of the ABCD algorithm.
Finally, Section 9 compares ABCD with existing work.

2 Overview of ABCD

A bounds check “check A[x]” is redundant if 0 � x < A:length
whenever the check is executed. ABCD optimizes the lower-bound
check (0 � x) and the upper-bound check (x < A:length) as two
independent problems.1 In this paper, we restrict our attention to
the optimization of upper-bound checks. The (dual) algorithm for
lower-bound checks can be derived trivially.

A straightforward approach to detecting redundant checks is
to i) construct a constraint system at each program point, perhaps
by propagating the constraints using dataflow analysis, and then
ii) apply a theorem prover at the point of the bounds check. Both
of these are expensive steps and ABCD streamlines them in the
following ways:

1We forgo the (rare) optimization opportunities created by the interplay of the two
problems for the sake of simplicity.

limit = a.length;

st = -1;

while (st < limit) f

st++;

limit--;

for (j = st; j < limit; j++) f

if (a[j] = a[j+1] ) ...

g

for (j = limit; --j >= st; ) f

if (a[j] = a[j+1] ) ...

g

g

Figure 1: The running example: Bidirectional Bubble Sort. The
figure shows a relevant fragment of a program from the Symantec
benchmark suite. A bounds check is performed before each of the
four array accesses. To simplify the presentation, the rest of the pa-
per omits the second for loop. ABCD can eliminate all four bound
checks in this example.

1. Instead of constraint propagation, ABCD builds a single,
program-point-independent constraint system. This con-
straint system is sparse; in fact, it is nothing more than SSA
form with a few extra edges.

2. Instead of relying on a theorem prover, ABCD performs a
simple, demand-driven traversal of the sparse representation.
Despite its limited power, our “traversal prover” was able to
eliminate 45% of dynamic upper-bound checks in our exper-
iments.

The remainder of this section outlines the main components of
ABCD: the types of constraints, the sparse constraint system and its
graph representation, the constraint solver, and finally the handling
of partially redundant bounds checks.

The Constraints. ABCD is efficient because it operates on sim-
ple difference constraints[Pra77, CLR92] of the form x � y � c,
where x is a program variable, y is a program variable or a sym-
bolic literal (e.g., the length of an array), and c is an integer con-
stant. Restricting the constraint form is what enables ABCD’s effi-
ciency: constraints on pairs of variables can be represented in the
sparse, global constraint system; and the difference relationships
can be processed with the simple “traversal solver.” Other work
(e.g.,[Sho81]) has also found it beneficial to restrict attention to
this class of inequalities.

Furthermore, ABCD gathers only constraints that can be ob-
tained with a local examination of the program code, without any
prior global analysis. The following five types of program state-
ments have been found to generate constraints useful for bounds-
check elimination:

C1 array-length literal x := A:length
C2 constant assignment x := c
C3 constant increment or decrement x := y + c
C4 conditional branches if/while x � y
C5 array-bounds check check A[x]

Constraints C1-C3 are generated by restricted forms of assign-
ments. Constraint C4 exploits invariants generated, on each exit
of a branch, by the branch’s conditional expression. Finally, con-
straint C5 exploits a successful array-bounds check “check A[x],”
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which guarantees that x < A:length. Note that all five of these
constraint types can be expressed as difference constraints. If a
variable is defined in an assignment that generates more complex
constraints (e.g., those outside C1-C3), then ABCD considers the
variable unconstrained (unless it also appears in statements C4-
C5). In general, disregarding existence of some constraints is safe,
as it will, at worst, hide from us some redundant checks.

Sparse Global Representation of Constraints. Constraints gen-
erated by program statements C1–C5 are program-point specific.
Each of them is guaranteed to hold only in its live range, which is,
informally, the range of CFG nodes between the generating state-
ment and its dominance frontier or a killing definition, whichever
is closer. To encode the constraint live ranges compactly (i.e.,glob-
ally rather than per node), ABCD splits live ranges of program vari-
ables via SSA-style renaming. In effect, the renaming converts a
flow-sensitive constraint system into an equivalent flow-insensitive
system, as was done for pointer analysis in [HH98].

ABCD splits live ranges of variables such that i) each resulting
live range refers to a unique variable name, and ii) for any vari-
able vi, the live range of vi is no larger than the live range of any
constraint involving vi. When expressed using the unique variable
names, the constraint system becomes program-point-independent
(global). Moreover, inheriting the SSA properties, the constraint
system is sparse, in that it directly connects statements that generate
related assertions, thus speeding up the constraint-solving process.

As in SSA, we split live ranges by inserting “dummy” assign-
ments. To split live ranges of constraints C1–C3, the standard
SSA �-assignments are sufficient. However, constraints C4 and
C5 require additional splitting, which we perform by inserting �-
assignments at conditionals and bound checks. We call the result-
ing representation the extended SSA(e-SSA) form. The e-SSA
form for the running example is shown in Figure 3.

Solving the Constraint System. To simplify the presentation,
we view the sparse constraint system not as a system of inequal-
ities, but instead as a graph, called the inequality graph. On the
graph, substitutions of constraints can be viewed as a graph traver-
sal, which we exploit for formulating a simple “traversal prover”
for our constraint system.

The inequality graph is an extension of the SSA value
graph [AWZ88]. There is one node for each e-SSA-variable, con-
stant, or array-length literal (e.g., the value A:length); edge weights
constrain the differences between pairs of nodes. Given an inequal-
ity graph, an (upper) bounds check “checkA[x]” is redundant if the
shortest path from A:lengthto x has negative length, which corre-
sponds to the bounds check condition, x�A:length< 0, being al-
ways true. The inequality graph for the running example is shown
in Figure 4.

The “traversal solver” for our constraint system is thus equiv-
alent to a shortest-path computation; a demand-driven version
of the solver amounts to computing the shortest path between
a pair of vertices (A:length and x). The situation is compli-
cated, however, by the fact that the inequality graph is a hyper-
graph [Ber73, GLPN93, RR96], which operates on a generalized
notion of the shortest path (see Section 4).

Handling Control Flow. The reason why ABCD’s constraint
system induces a non-standard notion of the shortest path is that
constraints must be treated in two different ways: Along a given
control flow path, each variable is bounded by the strongestcon-
straint generated on that path. In contrast, across a set of control
flow paths, a variable is bounded by the weakestconstraint pro-
duced by any of the paths. This “max-min” semantics of the in-

1. Build e-SSA form:
insert �-nodes (see Section 3)
compute SSA form (e.g., using [CFR+91])

2. Build the Inequality Graph GI :
(see Table 1)

3. Remove redundant checks:
for each check n of the form “check A[x]” do

– – see Figure 5
if demandProve(GI ; hx�A:length � �1i) then

remove n from the program
end for

Figure 2: The ABCD algorithm.

equality graph is encoded via two kinds of nodes. The maxnodes
are the �-nodes, which correspond to control flow merges. The
remaining nodes act as the min nodes.

The inequality graph also enables elimination of partially re-
dundant bound checks. Partially redundant checks are redundant
along some, but not necessarily all, control flow paths [MR79]. A
typical example is a loop-invariant check: its outcome is the same
in each loop iteration and therefore it can be optimized by being
executed once, before the loop is entered. While fully redundant
bounds checks can be deleted, partially redundant checks require
insertion of compensation checks that ensure that the check be-
comes redundant along all control flow paths.

We identify the insertion points using the �-nodes in the in-
equality graph. As was shown in [CCK+97] in the context of ex-
pressionelimination, insertion points correspond to a certain sub-
set of in-edges of the �-nodes. We extend this approach to the
inequality graph. Because the insertion performed by ABCD may
be speculative, we rely on profiling data to determine profitability
of the optimization. Our approach relies upon recent results that
demonstrate that speculative insertion is nearly as effective as non-
speculative techniques that perform complete redundancy removal
using code duplication [BGS98].

The ABCD Algorithm. The entire ABCD algorithm for fully re-
dundant checks is outlined in Figure 2. The first step transforms the
program into e-SSA form; the second steps connects e-SSA vari-
ables with constraints; the third step solves the constraint system
and removes checks that have been proven to be redundant.

3 The Extended SSA Form

ABCD encodes the scope of constraints by transforming the pro-
gram into the extended SSA(e-SSA) form, described in this sec-
tion. The salient property of e-SSA is that constraints generated in
an e-SSA program are valid wherevertheir variables are live. This
implicit encoding obviates the need to explicitly qualify constraints
with their CFG scope, which results in a compact constraint system.
Another important property is that constraints expressed on the e-
SSA program define a sparseconstraint system that can be solved
efficiently.

To understand the relationship between live ranges of variables
and scopes of constraints, consider a constraint x�y � c generated
in a CFG node n (for example by statement x := y + c). A safe
rule for delineating the scope of this constraint is to restrict it to
nodes at which x and y have the same values as they had at node n,
which is typically approximated by requiring that the values of x
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and y originate from the same definition sites as they did at node n.
Given this rule, the scope can be represented by enumerating nodes
where this “same-definitions” condition holds. ABCD uses a more
efficient approach: it splits and renames live ranges of variables so
that variables that appear in a constraint are used (i.e.,are live) only
within the constraint’s scope.2 In effect, the renaming converts a
flow-sensitive constraint system into an equivalent flow-insensitive
system, without a loss of precision.

ABCD splits variable live ranges by means of assignments, ei-
ther existing or new ones. As in the SSA form, each assignment
writes into a unique variable name, which uniquely names live
ranges. Assignments are needed at two points:

Case 1) When a constraint is created: Live ranges of constraints
C1–C3 already start at assignments, whose target variables
can be directly renamed. Constraints C4 start at exits of con-
ditionals, and constraints C5 start at bounds checks. To cap-
ture these two constraint types, ABCD inserts �-assignments,
as will be discussed below.

Case 2) When a constraint is killed: The scope of a constraint
u � v � c generated at node n is terminated (i) at a node
where u or v is redefined, (ii) at a control flow join that can
be reached by a path from n along which u or v are redefined,
or (iii) at a control flow join that is not dominated by n.

The standard SSA form sufficiently splits variable live ranges to en-
code constraints C1–C3. The SSA renaming is performed as fol-
lows [AWZ88]: New definitions, called �-assignments, are placed
(recursively) at control flow join points that are reachable by differ-
ent definitions of a variable v. Renaming the targets of original as-
signments to v enforces cases 1 and 2-i above; renaming the targets
of �-assignments enforces cases 2-ii and 2-iii. After the renaming,
each use of a variable is dominated by its single reaching definition,
which guarantees the desired property that v has the same value in
its entire live range.

To express constraintsC4 andC5, case 1 requires additional re-
naming. The renaming is performed by introducing �-assignments
on the exits of conditionals and bounds checks. Consider the con-
ditional statement shown below on the left:

if (i1 � 10) then if (i1 � 10) then

i2 := �(i1)

// i2 � 10 here

else =) else

i3 := �(i1)

// i3 > 10 here

end if end if

i4 := �(i2; i3)

The �-assignments are inserted, for each variable appearing in the
conditional expression, into the CFG out-edges of the conditional
branch.3 Thanks to the �-assignemnts, each outcome of the con-
ditional is associated with a distinct variable name, which serves
as a “hook” for attaching the constraints generated by the branch.
Although �-assignments are inserted into CFG edges, in the tex-
tual representation of the program used throughout this paper, �-
assignments are placed at the beginning of the basic blocks targeted
by the branch.

2To reduce the amount of program transformation, we actually allow the variables
appearing in the constraint to be live outside the scope, as long as they are simultane-
ously live only in the scope.

3Note that �-assignments are analogous to the switchoperators in the dependence
flow graph [JP93].

Similarly, to generate a new name for constraints C5, a �-
assignment is inserted after each bounds check. A bounds check
can be viewed as a special if statement that will transfer program’s
control into the exception handler if the check fails; if the check
does not fail, a useful constraint is generated:

check a[i1] check a[i1]

=) i2 := �(i1);

// i2 < a:length here

The constraint C5 must be expressed on the new name i2, rather
on i1, otherwise it could erroneously lead to elimination of some
bound checks, including the generating check itself.

Example 1 (e-SSA Form) Figure 3 depicts the running example
before and after the conversion to e-SSA form. For the sake of
brevity, the second for loop from Figure 1 is omitted. To reduce
the number of �-assignments induced by �-assignments, no �-
assignment for limit is inserted into the for loop. This is safe
because there are no uses of limit4 in the loop. �

4 The Constraint System and the Inequality Graph

Once the program is converted into e-SSA form, the constraints
generated throughout the program can be “connected” into a sin-
gle, flow-insensitive constraint system. Thanks to the simplicity
of constraints considered by ABCD (difference constraints of two
variables), this constraint system can be represented as a weighted
directed graph and can be solved with relatively efficient graph
traversal algorithms. This section presents the graph representation
of the constraint system and its properties. The following section
presents an efficient solver for the constraint system.

Representing simple constraint systems with graphs is a stan-
dard technique; a common example is the constraint graph[Pra77,
CLR92]. Our Inequality Graph(GI ) generalizes the constraint
graph in that it allows representing program’s control flow, as fol-
lows. First, GI allows us to detect whether a given bounds check
is redundant along all control flow paths. Second, GI maintains
enough program structure information to perform code motion of
partially redundant bounds checks (see Section 6). The solution of
the constraint system represented by GI is computed similarly to
how it is computed on the constraint graph — using a notion of the
shortest path (see Section 5).

Informally, vertices of the inequality graph represent program
variables (in e-SSA form), constants, and literals. An edge con-
nects two vertices if the program generates a constraint on their
difference (variables for which the program does not generate a
constraint will create disconnected vertices in GI ).

Definition 1 (The inequality graph GI ) Given a program P in e-
SSA form, the Inequality Graphof P is a weighted, directed graph
GI = (V;E; d) with a distinguished set of vertices V� � V :

� V = fvig [ fAj :lengthg [ fckg, where vi is a program
variable, Aj :length is a program literal denoting the length
of array Ai, and ck is an integer constant appearing in the
program P .

� E contains a directed edge u! v iff P generates a constraint
v � u � c according to any rule in Table 1. The weight
d(u! v) of the edge is c 2 N.

� V� is a distinguished subset of vertices, V� � V , such that
vi 2 V� iff variable vi is defined in program P using an e-
SSA �-assignment. �

324



Original program:

limit := A.length

st := �1

while: while (st < limit)

if (st < limit) f

st := st + 1

limit := limit � 1

j := st

for: for (j := st; j < limit; j++)

if (j < limit) f

check A[j] A[j]

t := j + 1

check A[t] A[j+1]

j := j + 1 j++
goto for

g end for
goto while

g end while

e-SSA form:

limit0 := A.length

st0 := �1

while:

limit 1 := �(limit 0,limit 3)

st 1 := �(st 0,st 3)

if (st1 < limit1) f

st 2 := �(st 1)

limit 2 := �(limit 1)

st3 := st2 + 1

limit3 := limit2 � 1

j0 := st3
for:

j 1 := �(j 0,j 4)

if (j1 < limit3) f

j 2 := �(j 1)

limit 4 := �(limit 3)

check A[j2]

j 3 := �(j 2)

t0 := j3 + 1

check A[t0]

t 1 := �(t 0)

j4 := j3 + 1

goto for

g

goto while

g

Figure 3: The running example before and after the conversion into e-SSA form.

Recall that Table 1 defines the edges of GI for the elimination
of upper-bound checks; the elimination of lower-bound checks is
based on analogous, but separate, inequality graph.

Example 2 (The Inequality Graph GI ) Figure 4 shows the in-
equality graph GI for the running example. The vertices are
the program entities from Figure 3: (e-SSA) variables, the literal
A:length, and the constant �1 . The set V� contains the three �-
assignments. Note that, thanks to e-SSA form, a vertex represents
the definition as well as all uses of a variable. e-SSA form also
guarantees that GI is not a multigraph. Finally, note that the names
in V denote, interchangeably, both the program entities and the
vertices of the inequality graph. �

It is worth mentioning why we decided to represent constraints
generated by program assignments with inequalities, rather than
with equalities, which appear to be the more intuitive choice, and
which would also allow using the same inequality graph for both
upper- and lower-bounds check elimination. The first motivation
is to represent all constraints uniformly, exclusively with inequal-
ities. The more important motivation is to formulate a consistent
constraint system in the presence of the constraints C4. Consider
the C4 rules in Table 1. If the assignments vj := �(vi) and
vk := �(vi) were translated into constraints

vj = vi and vk = vi;

rather than into vj � vi and vk � vi, as it is done by ABCD, the

constraint system would imply

vj = vk:

Similarly, the system would imply ws = wt for the other �-
assignments in C4. As a result, the constraints generated on the
exit of the conditional in rule C4, namely

vj � ws and wt � vk � 1;

would be inconsistent, as no value of the program variables v and
w could satisfy the constraint on vk:

vk = vj � ws = wt � vk � 1:

To avoid the inconsistency, ABCD translates the assignments vj :=
�(vi) and vk := �(vi) into constraints

vj � vi and vk � vi;

which makes variables vj , vk mutually unconstrained, reflecting
the fact that vj and vk are never live simultaneously at any node in
the program and thus their values should not be compared.

We are now ready to define the system of difference constraints.

Definition 2 (The constraint system) The constraint system of an
inequality graph GI = (V;E; d) with a distinguished set of ver-
tices V� is a set of inequalities

v �

(
max
u!v

fu+ d(u! v)g if v 2 V�,

min
u!v

fu+ d(u! v)g if v 2 V � V�. (1)
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constraint generating generated edge / edge weight
type statements constraint
C1 vi := Aj :length vi � Aj :length Aj :length! vi 0
C2 vi := c vi � c c! vi 0
C3 vi := vj + c vi � vj + c vj ! vi c
C4 if vi � wr then vj � vi vi ! vj 0

vj := �(vi) ws � wr wr ! ws 0
ws := �(wr) vj � ws ws ! vj 0

else vk � vi vi ! vk 0
vk := �(vi) wt � wr wr ! wt 0
wt := �(wr) wt � vk � 1 vk ! wt �1

C5 check Ak[vi]
vj := �(vi) vj � Ak:length� 1 Ak:length! vj �1

control vi := �(vj ; vk) vi � maxfvj ; vkg vj ! vi 0
flow (vi 2 V�) vk ! vi 0

Table 1: The edges of the inequality graph for elimination of upper-bounds checks.

for each v 2 V . A feasible solution for the constraint system is
an assignment of integer values to variables in V that satisfies all
constraints. �

Handling Control Flow. ABCD extends the standard difference-
constraint system [Pra77] in order to express the control flow of the
program. The standard system consists of a set of equations

v � u � d(u! v) 8v; u 2 V

which is equivalent to the following set of equations

v � min
u!v

fu+ d(u! v)g 8v 2 V: (2)

To see how ABCD extends the standard difference-constraint sys-
tem, compare equations 1 and 2: a set V� of distinguished vertices
is constrained not by the strongestconstraint that holds on its in-
edges, but instead by the weakestone. To reflect the semantics of
vertices in their mnemonics, we refer to vertices in V� as maxver-
tices and the vertices in V � V� as min vertices.

Because V� corresponds to �-assignments, Eq. 1 ensures that a
bounds check is redundant along all incoming control flow paths.
As an example, consider variable st1 2 V� defined in Figure 4 by
st1 := �(st0; st3). The following constraints hold for arguments
of the �-assignment (the first line follows from the fact that array
length is non-negative, which could be represented as an edge in
GI ):

st0 � �1 � A:length� 1

st3 � st2 + 1 � limit2 � limit1 � limit0 � A:length

i.e., the control flow predecessor corresponding to st3 constrains
the value of st1 less than the predecessor corresponding to st0.
The constraint on st1 that holds along all incoming control flow
paths is st1 � A:length, the weaker of the two constraints, as is
(correctly) computed by Eq. 1: st1 � maxfst0; st3g.

Consistency. Because GI may contain negative cycles, its con-
straint system may seem inconsistent, due to implying v � v +
c; c < 0. Informally, the consistency of out constraint system is
guaranteed by the presence of at least one maxvertex in each cy-
cle, which breaks the cycle if it is negative. Consider the negative
cycle limit1; limit2; limit3 in Figure 4. Because each negative cy-
cle strengthens constraints, the weakest constraint at the maxvertex

limit1 must come from outside the cycle. By propagating the con-
straint on limit0 from outside the cycle, the maxnode effectively
breaks the cycle.

More formally, let C be a negative cycle in GI . Because each
cycle in GI is created as a result of cyclic control flow, C must con-
tain at least one �-assignment whose one or more arguments are de-
fined outside the cycle. Let v1, defined by v1 := �(v2; v3), be such
a vertex. From the constraint system we have v1 � maxfv2; v3g.
Assume that v2 is the argument defined outside the negative cycle
C. Hence, v3 “closes” the negative cycle: v3 � v1 + c; c < 0.
Therefore, v1 � maxfv2; v1+cg = v2, which yields an equivalent
constraint system without the negative cycle C.

Redundancy of a Bounds Check. We now relate the solution of
the constraint system to the redundancy of a bounds check.

Definition 3 (Fully redundant check) An upper-bound check
“check Ai[vj ]” is fully redundant if vj � Ai:length� 1 whenever
the check is executed. �

In terms of the constraint system, a bounds check is redundant
if the check is true under each feasible solution of the constraint
system. In other words, a bounds check is redundant if it is implied
by the constraint system.

Theorem 1 Let b be an upper-bound check “check Ai[vj ]” in pro-
gram P , and let GI be the inequality graph of P . The check b
is redundant if for any feasible solution D to GI , the D(vj) �
D(Ai:length)� 1. �

Proving redundancy of the bounds check “check Ai[vj ]”
thus entails computing the greatest value of �(Ai:length; vj) =
D(vj) � D(Ai:length), for all feasible solutions D of GI . The
bounds check “check Ai[vj ]” is redundant if �(Ai:length; vj) �
�1. We call the value �(u; v) the distancebetween vertices u and
v in GI . Alternatively, the distance �(u; v) can be defined as the
smallest value d such that adding constraint v � u + d into the
constraint system will not change the set of feasible solutions of
the system.

The problem of computing the distance in GI is a generaliza-
tion of the shortest-path problem in a weighted directed graph. Be-
fore we outline the generalization, we note that, for upper-bound
check elimination, the distance in GI corresponds to the longest
path, i.e., to the shortest path in the reverseproblem, in which
+1 < �1 and hence the maxoperator selects the shorter path.
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Figure 4: The inequality graph GI of the running example. The meaning of an edge u
c
! v is v � u + c. Each (upper-bound) check is

represented in GI with two vertices: the array-lengthvertex and the array-indexvertex. For example, the bounds check “check A[j2],” is
represeneted with vertices A:lengthand j2. A bounds check is redundant if the distance between the two vertices is less than 0. To compute
the distance from a node u, we “propagate” from u the sum of edge weights in the following way: at each �-node, the distance equals the
greatest incoming distance; at each remaining node, the distance equals the smallest incoming distance. The distance between A:lengthand
j2 is �2. The corresponding “shortest” path for this distance is hA:length; limit0; limit1; limit2; limit3; limit4; j2i.

For the rest of the paper, the terms “shorter/longer” refer to the re-
verse problem (in which 3 is shorter than 2).

An intuitive way to describe how distance generalizes the short-
est path is to give an instance of GI in which the distance and the
shortest path are defined identically. This is the case when only
vertices from V� have multiple predecessors. Under such a restric-
tion, each path in GI corresponds to a control flow path, and the
distance in GI corresponds to the shortest path in GI . The shortest
path thus finds a constraint that is valid along all control flow paths.
In contrast, when vertices in V � V� are allowed to have multiple
predecessors, GI may contain paths that corresponds to different
constraints that hold along the samecontrol flow path. Therefore,
when computing the distance along a given control flow path, we
pick the longest of these different paths in GI .

An elegant formalism for dealing with two kinds of paths is the
hypergraph[Ber73, GLPN93, RR96]. A directed hypergraph con-
sists of a set of nodes and a set of hyperarcs, where each hyperarc
connects a set of nodes to a single target node. The concept of hy-
perpathsis defined recursively. There exists an empty hyperpath
from from a set S of nodes to a node t if t 2 S. A non-empty
hyperpath from a set S of nodes to a node t consists of an hyperarc
from a set S0 to t and a hyperpath from S to s for every node s
in S0. A hyperpath from S to t is thus a set of componentpaths,
which are traditional paths (i.e.,sequences of vertices).

To turn the inequality graph into a hypergraph, we group all
in-edges of a vertex v 2 V � V� into a single hyperarc; every in-
edge of a vertex in V� represent a separate hyperarc. The distance
between u and v is defined as follows: The length of a hyperpath P
from u to v equals the length of the longest of the component paths

of P . The distance from u to v equals the shortest of all hyperpaths
from u to v.

Example 3 To determine whether the bounds check “checkA[j2]”
is redundant using the inequality graph in Figure 4, we compute
the distance between the vertex A:lengthand the vertex j2. If the
distance is less than 0, then the array index j2 is at most �1 greater
than the array length, and hence is within its bounds.

The distance between A:lengthand j2 is �2. Hence the check
“check A[j2]” is redundant. The distance is equal to the longest
component path of the shortest hyperpath between the two vertices,
which is hA:length; limit0; limit1; limit2; limit3; limit4; j2i. �

5 The Constraint Solver

This section presents the details of the solver that ABCD uses to
identify fully redundant checks. The extensions for partially re-
dundant checks are described in the next section.

The constraint system represented by the inequality graph
can be solved in various ways. First, as it has already been
mentioned, the inequality graph GI can be viewed as a hyper-
graph [Ber73, GLPN93, RR96]; the redundancy of a check is then
reduced to computing the shortest hyperpath between two ver-
tices (the array-length vertex and the array-index vertex). Sec-
ond, when the hypergraph is viewed as an abstract grammar prob-
lem [Ram96], the shortest hyperpath can be found using a fixed-
point computation. Third, the shortest hyperpath can be computed
efficiently using the dataflow analysis solver in [GW75], in O(E2)
time (even if GI is irreducible).
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ABCD uses an algorithm with worse asymptotic time complex-
ity but with very good practical running time, which is mainly due
to the typically small size of the sparse inequality graph. In con-
trast to the above three exhaustiveanalysis approaches, our solver
works on demand. An exhaustive algorithm analyzes all bounds
checks in the program, which in the context of shortest paths means
computing the single-source shortest-path problem for each array-
length vertex. A demand-driven approach analyzes a single bounds
check, which amounts to computing the shortest path between the
array-length vertex and the array-index vertex.

Our solver is demand-driven in yet another sense: Because we
expect that a dynamic optimizer will optimize only a small fraction
of all bounds checks, our design favors performance of a single-
check analysis over a batch analysis of all bounds checks. There-
fore, our solver does not actually return the lengthof the shortest
path, but only a booleaninformation whether the shortest path is
below a limit sufficient to prove that a given bounds check is re-
dundant. This less strict question sometimes allows the solver to
examine fewer paths than would be necessary to compute the pre-
cise value of the shortest path.

To explain how the solver works, let us consider first GI that
is acyclic (but contains both min and maxnodes). An efficient way
of computing the shortest path between a source s (an array-length
vertex) and a target t (an array-index vertex) is to perform a topo-
logical traversal from s to t, performing the min/max operations in
the process. However, to determine the topological order, one must
first traverse the entire graph, which is what demand analysis seeks
to avoid in the first place. Therefore, instead of a topological traver-
sal, the solver performs a “brute-force” depth-first exploration of
the graph, in which a node may be visited multiple times. Each
successive visit of a node corresponds to a stronger question about
the distance of that node from the array-length vertex.

The algorithm, shown in Figure 5, performs a depth-first traver-
sal of GI starting at the array-index vertex b. Intuitively, the recur-
sive exploration of the graph proceeds forward (against the direc-
tion of GI edges) until either the source vertex a is reached, or until
a cycle is detected. The goal is to determine, for each traversed path
from b to a, whether it is longer than c. To this end, the forward
pass propagates the value c and adjusts it as it crosses each edge, so
that when the source vertex is reached, the traversed path is longer
than c iff the propagated value is greater than zero. Depending on
the outcome of this comparison, the recursion will return the value
of either True(the path is shorter) or False(the path is longer or of
the same length).

Let us now consider cyclic inequality graphs. As was
mentioned in the previous section, although arbitrary inequality
graphs may contain negative-weight cycles, these cycles have non-
decreasing effect on the path distance, because each cycle is broken
by a maxnode. Cycles with positive weight, however, may impact
path distance, if they are not broken by a minvertex. Positive cycles
in GI correspond to program loops in which the program variable
is incremented in the loop body. We call these GI cycles ampli-
fying cycles. In Figure 4, the cycles involving st1 and the cycle
involving j1 are amplifying. In contrast, the cycle of limit1 is not
amplifying. Consider the cycle on variable st in the example in
Figure 4. If the edge limit2 ! st2 was removed from Figure 4, the
cycle on st would cause the distance from st0 to j0 to be of positive
infinite weight.

Conceptually, our algorithm works by identifying and reducing
amplifying cycles. After such a cycle is broken, two situations may
occur. If the cycle was an articulation point between the source
vertex and the bounds check vertex, the distance will be (correctly)
computed to have infinite weight, which means that the check can-
not be proven to be redundant. If, after breaking the cycle, another
path leads to the source (via a min vertex), the value of distance

may still be small enough to prove the check redundant. Consider
j2 in Figure 4. When its amplifying cycle is broken (i.e.,by remov-
ing edge j1 ! j2), an alternative path to A:length remains, via
limit4, with weight of �2, which is sufficient to prove the bounds
check redundant.

To detect positive-weight cycles, the forward exploration keeps
in active[v] the value of the propagated value c for each vertex
v that is on the active depth-first traversal path. When a back-
edge is traversed, the positive weight cycle is detected by com-
paring the current value of c and its value “one cycle ago.” When a
positive-weight cycle is detected, the value Falseis returned. When
a “harmless” cycle of weight zero or less is detected, we consider
the path reduced, returning the value Reduced. The cycle is reduced
in the sense that it does not influence the distance from a to b.

In summary, when the forward exploration stops at a node, we
know for each path originating at b whether its distance is smaller
than or equal to c (result True), greater than c (result False), or
is reduced (result Reduced). When the recursion is returning back-
wards, the algorithm merges these results according to the min-max
semantics of GI vertices, using the following lattice L:

True> Reduced> False;

where True is the top element and Falseis the bottom element. A
max node v 2 V� merges these values using a meet operator u,
xuy = x, x � y. A min node v 2 V �V� merges these values
using a join operator t, x t y = x, x � y.

6 Removing Partially Redundant Checks

The previous section identified checks that never fail. For some
checks, however, such a strong guarantee cannot be proven. A typ-
ical example is a loop-invariant bounds check—all we can prove is
that it either fails in the first iteration of the loop or it never fails. In
general, such checks are called partially redundant:they are guar-
anteed not to fail along some (but not all) control flow paths leading
to them.

Some partially redundant checks can be eliminated with an op-
timization called Partial Redundancy Elimination (PRE), which
generalizes common subexpression removal and loop invariant
code motion [MR79]. PRE works by inserting compensating
checks in such program points that make the partially redundant
check fully redundant (i.e.,after the insertions, the check will have
been performed along all control flow paths) and hence it can be re-
moved. We present here PRE optimization of array-bounds checks,
as a natural extension of the ABCD algorithm for full redundancies.

Before we proceed to describe the extensions to ABCD, let us
introduce into the running example a partially redundant check.
This task is easily accomplished by removing the assignment
“limit0 := A:length” from Figure 3. The effect on the inequal-
ity graph (Figure 4) is that the vertex limit0 becomes disconnected
from vertex A:length, which breaks the shortest path that was used
to prove that “check A[j2]” is fully redundant. The check is now
only partially redundant; namely, it is loop-invariant.

6.1 The Analysis

In order to turn partially redundant bounds checks into fully redun-
dant checks, the analysis must determine:

� Where to insert the compensating checks.Our goal is to find,
for each partially redundant check b, a set of CFG edges into
which checks must be inserted to make b fully redundant. For
“check A[j2]” in Figure 3, it is sufficient to insert a check
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function demandProve(GI ; t) return boolean

� GI = (V;E; d) is the inequality graph with max vertices V� � V .

� t = hb � a � ci is the check to be proven, where b 2 V is the check’s index variable, and a 2 V is the array-length
literal. For example, when analyzing “check A[x],” t = hx�A:length � �1i. Vertices a and b are the source and the
target of the shortest-path computation, respectively.

� C memoizes the result of proving v � a � c, where a the array-length literal. C : V � N ! L, i.e., C maps hv � a � ci

into fTrue;False;Reducedg.

� active detects cycles: if active[v] 6= null , then active[v] is the distance of v from b, where b is the check’s index variable.
active maintains the distance for each vertex v that is on the path on the current DFS stack.

begin
1 C  active ;
2 if prove(a; b; c) 2 fTrue;Reducedg then return true ; else return false

function prove(vertex a; vertex v; int c) return fTrue, Reduced, Falseg

// same or stronger difference was already proven
3 if C[v � a � e] = True for some e � c then return True

// same or weaker difference was already disproved
4 if C[v � a � e] = False for some e � c then return False

// v is on a cycle that was reduced for same or stronger difference
5 if C[v � a � e] = Reduced for some e � c then return Reduced

// traversal reached the source vertex, success if a� a � c

6 if v = a and c � 0 then return True
// if no constraint exist on the value of v, we fail

7 if v has no predecessor in GI then return False
// a cycle was encountered

8 if active[v] 6= null then
9 if c > active[v] then return False // an amplifying cycle
10 else return Reduced // a “harmless” cycle
11 end if
12 active[v] c

13 if v 2 V� then
14 for each edge u! v 2 E do C[v � a � c] C[v � a � c] u prove(a; u; c� d(u! v))

15 else
16 for each edge u! v 2 E do C[v � a � c] C[v � a � c] t prove(a; u; c� d(u! v))

17 end if
18 active[v] null
19 return C[v � a � c]

end prove
end demandProve

Figure 5: The algorithm for proving the redundancy of a bounds check. The procedure demandProve(GI ; t) returns true if the check
t = hb� a � ci is proven to be redundant on the inequality graph GI , which is equivalent to showing that the distance between vertex a and
vertex b in GI is no greater than c.
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into the edge that corresponds to the first argument of limit1’s
�-node, which is the entry of the while loop.

The ABCD algorithm extended for PRE computes the set of
insertion edges during the backtracking from the recursive ex-
ploration of the inequality graph. A check is inserted into a
�-node’s in-edge exactly when some of �-node’s arguments
were proven (i.e.,procedure prove()returned True) and some
were not able to be proven (i.e., prove()returned False). The
False arguments are then collected during the backtracking
into the insertion set.

� What compensating checks should be inserted.The com-
pensating check may be different than the check being opti-
mized. Specifically, the checks may differ in their index ex-
pression: the compensation of a check “check A[vi]” may
require insertion of a check “check A[vj + cj ].” In our ex-
ample, the check “checkA[j2]” is compensated with a check
“check A[limit0 + 2].”

Identifying the index expression in ABCD is trivial. Due to
the reliance on simple difference constraints, the index ex-
pression is always of the form vi + d (we assume that the in-
dex expression of the optimized bounds check is of the form
vj + 0): The variable vi corresponds to the �-node argument
into which the insertion is being performed. The constant d
equals the distance from the insertion point to the array-index
vertex; in our example, the distance between limit0 and j2
equals 2; therefore, the compensating check in our example
is “check A[limit0 + 2].” This distance can easily be com-
puted from the value c propagated by the recursive procedure
prove().

� Profitability of removing the partial redundancies.To ensure
that inserted checks do not increase the dynamic number of
checks in the program, traditional PRE techniques insert a
check only when its cost can be amortized by removing a
check on each control flow path emanating from the insertion
point. The “amortization” condition is computed as backward
dataflow problem of anticipability [MR79].

ABCD estimates profitability using run-time profiling. We
do not require that the check be removed on each emanat-
ing path. Instead, we allow control-speculativeinsertion, in
which we speculate that the program will follow a path on
which the insertion will lead to a removal of a check. To
determine whether speculative insertion is profitable, ABCD
compares the cumulative execution frequency of the insertion
points with the frequency of the partially redundant check.
If the impairment due to insertions is lower than the benefit
due to removal of the check, we carry out the transforma-
tion. Such a profile-based PRE has been shown to be nearly
as powerful as a complete removal of redundancies based on
program restructuring [BGS99].

The algorithm in Figure 5 can be easily extended to remove
partial redundancies. The recursive function prove is extended to
return not only the three lattice values but, when the value is False,
also the list of insertion edges that will make the optimized check
fully redundant. The meet and join operators now also manipulate
the insertion sets. At a min vertex, ABCD selects the set that has
the lower execution frequency. At a max vertex, the propagated
sets are merged.

6.2 The Transformation

Although ABCD allows an elegant analysis of where compensat-
ing checks should be inserted, it does not address the problem of

transforming the program. The broader problem is how to main-
tain exception semantics in the presence of code motion: When a
hoisted(i.e., inserted) check fails, the exception cannot be raised
immediately; it must be delayed, and raised at the location of the
original (i.e., partially redundant) check. This broader problem is
beyond the scope of the paper. In this subsection we describe the
solution that we currently use in our implementation of ABCD. We
also sketch the solution that we are investigating.

In the current solution, each bounds check is split into two in-
structions: the compareinstruction, which sets a register if the in-
dex is out of bounds, and the trap instruction that raises the excep-
tion if the flag is set. As we discuss below, traps require a different
transformation than compares do. Therefore, our current approach
optimizes only the compare instructions. While leaving traps in the
original locations prevents us from moving code freely around ar-
ray accesses, which was the primary motivation for bounds-check
optimization, note that only partially redundant traps are left in
the code; all fully redundant traps—a majority of all traps—are
removed.

Removing traps is similar to removing conditional branches.
Traditionally, conditional branches are optimized with program re-
structuring (i.e., code duplication) [MW95, BGS97]. We see re-
structuring as too expensive for a dynamic compiler, and hence our
current work is exploring transformation techniques unique to the
dynamic-optimization setting.

Our approach for run-time removal of traps is as follows. The
optimized version of the loop executes without a trap. When a
compare instruction fails, the code for the unoptimized version of
the loop (with the trap) is generated and the execution is transferred
to it. Now, it is possible that the hoisted check failed spuriously, i.e.,
it was executed speculatively (see Section 6.1). If this is the case,
the unoptimized loop finishes without encountering the trap and we
proceed with the execution of the optimized version of the code.

7 Extensions

7.1 Global Value Numbering

The inequality graph GI can represent not only local constraints,
i.e., those generated by individual program statements shown in
Table 1, but also constraints deduced by a global program anal-
ysis, for example, by global value numbering [AWZ88]. When
two SSA variables vi and vj are found to be value congruent, their
equivalence can be reflected in GI by a constraint edge vi ! vj
with weight 0. Following the restrictions of the value-numbering
algorithm, this edge can be inserted only if the definition of vi dom-
inates the definition of vj , which serves to guarantee that any con-
straint that holds on vi will hold whenever vj is executed.

Our current implementation of ABCD exploits global value
numbering in a more restricted, but also more economical, fash-
ion than described above. We do not encode the results of value-
numbering analysis on GI . Instead, we consult the congruence
information on demand, in the following common scenario: When
attempting to eliminate a check “check A[x],” we were able to es-
tablish that x < B:lengthbut not that x < A:length. In that case,
we consulted the value-numbering analysis and if A and B were
congruent, we obtained the desired proof that x < A:length.

7.2 Elimination of both lower- and upper-bounds checks

The ABCD algorithm presented in the paper eliminates upper-
bound checks. To detect redundant lower-bound checks, two
changes to the algorithm are needed. First, we reverse the rela-
tional operator of the constraints C1–C3 from � to � (see Ta-
ble 1). Second, the source vertex for the shortest-path computation
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is not Ai:length, but the lower bound, which in Java is the constant
vertex 0.

It is interesting to note in this context that ABCD performs (an
implicit) subsumption of bound checks. For example, the upper-
bound check A[i� 1] is redundant with respect to the upper-bound
check for A[i]. A equivalent subsumption will be performed for
lower bound checks: a lower-bound check for A[i] is redundant
with respect to a lower-bound check A[i� 1].

Although ABCD treats the analysis of upper- and lower-bound
checks as two independent problems, these two problems are
treated together in the transformation stage of the optimization.
Next, we describe a trick that can merge an upper- and a lower-
bound check into a single check instruction. This trick applies to
arrays that have zero as their lower bound (as in Java). The merged
check is performed as an unsigned comparison, thanks to which a
negative value of the array index is thus transformed into a large
positive value that is guaranteed to exceed the size of the largest ar-
ray allowed in a Java virtual machine. Therefore, the upper-bound
check on the unsigned value is equivalent to performing a (lower-
bound) check for a negative value as well as the upper-bound check
on the signed value.

7.3 Pointer Aliasing and Array SSA Form

To convince the reader that ABCD correctly handles pointer alias-
ing, it is useful to highlight how aliasing in a strongly typed lan-
guage like Java differs from that in a language like C. We then
explain how ABCD deals with the two kinds of aliases.

In Java, local variables cannot be subject to pointer aliasing be-
cause their address cannot be taken. Furthermore, no statement
can change the size of an array referenced by a local Java variable.
Consider the program below.

x = new int[10];

y = x;

y = new int[1];

x[2]; passes bounds check

The two middle statements do not affect the value of x, and hence
the array access x[2] remains a valid (in-bounds) reference to the
array created in the x = new int[10] statement. SSA form
correctly accounts for the fact that x is not modified, by placing a
def-use edge between the definition of x and the reference to x[2].

x.f = new int[10];

y = x;

y.f = new int[1];

x.f[2]; fails bounds check!

Now, consider the second example. Because of the y = x copy
statement, array access x.f[2] refers to the array created by the
y.f = new int[1] statement, and hence the array access is
out of bounds. Again, SSA form will correctly capture this effect,
because the value of x.f will be the result of a memory load which
is assumed to return an unknown array. Therefore, there will be no
edge between the definition of x.f and the use of x.f in the array
access, and hence the ABCD algorithm will conclude that x.f[2]
refers to an unknown array.

In future work, we plan to use Array SSA form [SK98, KS98]
to perform a more precise def-use analysis in the presence of point-
ers that will enable the ABCD algorithm to conclude that x.f[2]
refers to the array created in the y.f = new int[2] statement.

8 Preliminary Experiments

We present an initial experimental evaluation of the ABCD al-
gorithm. Our experimental results were obtained by using
the Jalapeño optimizing compiler infrastructure [BCF+99] on a
166MHz PowerPC 604e processor running AIX v4.3. For these ex-
periments, the Jalapeño optimizing compiler performed a basic set
of standard optimizations including copy propagation, type prop-
agation, null check elimination, constant folding, devirtualization,
local common subexpression elimination, load/store elimination,
dead code elimination, and linear-scan register allocation. Previous
work [BCF+99] has demonstrated that Jalapeño performance with
these optimizations is roughly equivalent to that of the industry-
leading IBM product JVM and JIT compiler for the AIX/PowerPC
platform.

For our experiments, we used five Java benchmarks (db,
mpeg, jack, compress, jess) from the SPECjvm98 suite, seven mi-
crobenchmarks (bubbleSort, biDirBubbleSort, Qsort, Sieve, Hanoi,
Dhrystone, Array) from the Symantec suite [Sym], and three other
Java programs (toba, bytemark and jolt). For the SPEC codes, we
use the medium-size (-s10) inputs. The focus of our measurements
was on dynamic counts of bounds check operations. When we re-
port timing information, we report the best wall-clock time from
three runs.

Our preliminary implementation has several limitations. We do
not use any interprocedural summary information, as the Jalapeño
optimizing compiler assumes on “open-world” due to dynamic
class loading. We do not perform any code duplication, such as
generation of multiple versions of a loop or partitioning a loop it-
eration space into safe and unsafe regions [MMS98]. Most impor-
tantly, the Jalapeño optimizing compiler still lacks many optimiza-
tions (e.g.,global code motion) that can benefit from removal of
array bounds checks. For these reasons, these experimental results
should be considered a lower bound on the potential gains due to ar-
ray bounds check elimination, and we expect the results to improve
as Jalapeño matures.

Figure 6 shows the dynamic number of bounds checks removed
by ABCD. The baseline represents all the bounds checks that were
analyzed by ABCD; these are upper-bound checks, measured in
dynamic terms. For the five SPEC benchmarks, the number is
broken down into local checks (those from the same basic block,
and checks whose redundancy required global analysis). This di-
vision is not made for the remaining programs. Manual exami-
nation of the Symantec benchmarks showed that ABCD achieved
near-optimal performance, in the sense that checks that were left
unoptimized were not optimizable with intraprocedural analysis
(Hanoi), or requiring a complex pointer analysis (Dhrystone). In
static terms, the average number of checks that were found fully
redundant was about 31%. Only bytemarkhad a significant num-
ber of static checks that were partially redundant (26%).

The average number of analysis steps (i.e., invocations of the
recursive procedure prove) was less than 10 per analyzed check.
This low number confirms the benefit of the sparse approach. The
time to analyze one bounds check ranged from 0 to 35 milliseconds,
and averaged around 4 milliseconds. This time does not include the
time to construct the e-SSA form.

We measured run-time speedup on the Symantec benchmarks.
We observed about 10% improvement. The number was lower than
we expected, mainly due to the limitations of the infrastructure out-
lined above.
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Figure 6: The amount of bounds checks removed. The amount
shown for each benchmark represents the fraction of upper-bound
checks that were removed, measured in terms of dynamic instruc-
tion counts. For the benchmarks from SPECjvm98 (the top five
bars), this fraction is divided between local and global checks.

9 Related Work

Elimination of Array Bounds Checks. A number of approaches
have been taken for performing elimination of array bounds checks.
Theorem-proving-style algorithms have been used by Suzuki and
Ishihata [SI77], Necula and Lee [Nec98, NL98], as well as Xu
et al. [XMR00]. Although more powerful than ABCD, theorem
proving is expensive and therefore unsuitable for a dynamic opti-
mization setting. Value-range analysishas been used to compute
bounds on the values of index expressions for the purpose of elim-
inating full redundancy[Har77, Pat95, RR99]. One of our goals
was to handle non-scientific programs, which often have complex
control flow. Therefore, in addition to full redundancy, it was im-
portant for us to handle elimination of partial redundancy. Several
conventional iterative data-flow-style bounds check elimination al-
gorithms have been developed that eliminate partial redundancy
[MCM82, Gup90, Gup94, Asu92, KW95]. However, none of these
algorithms exhibit the efficiency of our algorithm, which is based
upon demand-driven analysis over a sparse representation. While
all of the above research focuses on imperative programs, work by
Xi and Pfenning considers functional programs [XP98].

Midkiff et al. [MMS98] have recently focused on elimination
of bounds checks from scientific code written in Java. Their work
is complementary to ours since our focus is on non-scientific code
with complex control flow.

Techniques for eliminating partially redundant conditional
branches [BGS97, MW95] determine through compile-time anal-
ysis the outcomes of branch conditionals, which are similar in na-
ture to bounds check conditions. However, these algorithms are
limited in their power as, unlike our algorithm, they do not in-
terpret increments of variables, which is critical for bounds check
elimination because index expressions in loops nearly always refer
to loop-induction variables. While the algorithm by Bodik et al.
[BGS97] uses demand-driven analysis, it is still quite expensive for

use in a dynamic-optimization setting. It does not employ a sparse
representation and uses expensive restructuring transformations for
elimination of partial redundancy, while we perform hoisting.

Chow et al. [CCK+97] have developed a PRE algorithm that
also operates on the SSA graph. However, their algorithm does not
employ demand-driven analysis. Our algorithm is also simpler in
that it does not require an explicit distinction between speculative
and nonspeculative redundancy removal. Finally and most impor-
tantly, the focus of their work, like many other works on redun-
dancy elimination [KRS92, BGS98], is on PRE of expressions and
not array-bounds checks. As we have demonstrated in this paper,
elimination of bounds checks has a significantly different character
since assertions generated from different sources (loop exit con-
ditions, increments of induction variables, etc.) must be analyzed
in concert to prove that a bounds check is redundant. Also array-
bounds check elimination exhibits min-maxhypergraph behavior.

Demand-driven Data-Flow Analysis. Duesterwald et
al. [DGS97] and Horwitz et al. [HRS95, SRH96] have de-
veloped demand-driven data flow analysis frameworks for iterative
approaches that only allow lattices of finite size or height. For the
purpose of bounds check elimination we need to handle infinite-
height lattices and require elimination-style analysis to handle
loops. Bodik et al. present an elimination-style demand-driven
analyzer that can handle lattices of infinite height in [BGS98].
However, it operates on a dense program representation (control
flow graph) and thus does not satisfy the efficiency goals of
dynamic optimization. In contrast, the algorithm developed in this
paper achieves further efficiency by performing demand-driven
analysis over a sparse program representation.
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