1. Let \(\mathbf{u} = \langle 1, -2, 0 \rangle \) and \(\mathbf{v} = \langle 2, 2, 1 \rangle \). Then calculate the following quantities:
 (a) \(\mathbf{u} \cdot \mathbf{v} \)
 (b) \(\mathbf{u} \times \mathbf{v} \)
 (c) \(\mathbf{v} \times \mathbf{u} \)
 (d) \(\text{proj}_{\mathbf{u}} \mathbf{v} \) (the projection of \(\mathbf{v} \) onto \(\mathbf{u} \)).

2. Prove that for any three vectors \(\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3 \),
 \[
 \mathbf{u} \times \mathbf{v} \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u}
 \]

3. Consider the following picture, where \(\mathbf{n}, \mathbf{l}, \) and \(\mathbf{r} \) are all unit vectors. Give an equation for \(\mathbf{r} \) in terms of \(\mathbf{n} \) and \(\mathbf{l} \) (i.e., that does not refer to \(\theta \)).

4. Consider the plane that contains the points \(\langle 1, 0, 0 \rangle \), \(\langle 0, 1, 0 \rangle \), and \(\langle 0, 0, 1 \rangle \).
 (a) Give the implicit equation for this plane.
 (b) Give the parametric equation for this plane.
 (c) What is the normal vector to this plane?

5. Let \(\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^3 \) and let \(\mathbf{M} \) be the matrix formed by taking \(\mathbf{u}, \mathbf{v}, \) and \(\mathbf{w} \) as its columns. Then show that
 \[
 \det \mathbf{M} = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}
 \]