
Lesson 5: Extensions

1

1/31/02 Lesson 5 1

Lesson 5
Simple extensions of the

typed lambda calculus

1/24-2/02
Chapter 11

1/31/02 Lesson 5 2

A toolkit of useful constructs

• Base types
• Unit
• Sequencing and wild cards
• Type ascription
• Let bindings
• Pairs, tuples and records
• Sums, variants, and datatypes
• General recursion (fix, letrec)

Lesson 5: Extensions

2

1/31/02 Lesson 5 3

Base Types

Base types are primitive or atomic types.

E.g. Bool, Nat, String, Float, ...

Normally they have associated intro and elimination
rules, or alternatively sets of predefined constants and
functions for creating and manipulating elements of the
type. These rules or sets of constants provide an
interpretation of the type.

Uninterpreted types can be used in expressions like lx: A. x
but no values of these types can be created.

1/31/02 Lesson 5 4

Type Unit

Type:
 Unit

Terms:
 unit

Rules:
 G |- unit : Unit

The type Unit has just one value: unit.
It is typically used as the return type
of a function that is used for effect
(e.g. assignment to a variable).

In ML, unit is written as “()”.

It plays a role similar to void in C, Java.

Lesson 5: Extensions

3

1/31/02 Lesson 5 5

Derived forms

Sequencing: t1; t2

Can be treated as a basic term form, with its own evaluation
and typing rules (call this lE, the external language):

t1 Æ t1’

t1; t2 Æ t1’; t2
(E-Seq) unit; t2 Æ t2 (E-SeqNext)

G |- t2 : T2

G |- t1; t2 : T2
(T-Seq)

G |- t1 : Unit

1/31/02 Lesson 5 6

Sequencing as Derived Form

Sequencing Can be also be treated as an abbreviation:

 t1; t2 =def (lx: Unit. t2) t1 (with x fresh)

This definition can be used to map lE to the internal
language lI consisting of l with Unit.

Elaboration function
 e: lE Æ lI

 e(t1; t2) = (lx: Unit. t2) t1
 e(t) = t otherwise

Lesson 5: Extensions

4

1/31/02 Lesson 5 7

Elaboration theorem

Theorem: For each term t of lE we have

 t ÆE t’ iff e(t) ÆI e(t’)

 G |-E t : T iff G |-I e(t) : T

Proof: induction on the structure of t.

1/31/02 Lesson 5 8

Type ascription

Terms:
 t as T

Eval Rules:

t1 Æ t1’

t1 as T Æ t1’ as T
(E-Ascribe1)

v as T Æ v (E-Ascribe)

Type Rules:

G |- t1 as T : T
(T-Ascribe)

G |- t1 : T

Lesson 5: Extensions

5

1/31/02 Lesson 5 9

Let expressions

Terms:
 let x = t1 in t2

Eval Rules:

t1 Æ t1’

let x = t1 in t2 Æ let x = t1’ in t2
(E-Let)

let x = v in t Æ [x ! v]t (E-LetV)

Type Rules:

G |- let x = t1 in t2 : T2
(T-App)

G |- t1 : T1 G, x: T1 |- t2 : T2

1/31/02 Lesson 5 10

Let expressions

Let as a derived form

 e(let x = t1 in t2) = (lx : T. t2) t1

but where does T come from?

Could add type to let-binding:

 let x: T = t1 in t2

or could use type checking to discover it.

Lesson 5: Extensions

6

1/31/02 Lesson 5 11

Pairs

Types:
 T1 ¥T2

Eval Rules: (i = 1,2)

t1 Æ t1’

t1.i Æ t1’.i
(E-Proj i){v1,v2}.i Æ v1 (E-PairBeta i)

Terms:
 {t, t} | t.1 | t.2

t1 Æ t1’

{t1, t2} Æ {t1’, t2}
(E-Pair1)

t2 Æ t2’

{v1, t2} Æ {v1, t2’}
(E-Pair2)

Values:
 {v, v}

1/31/02 Lesson 5 12

Pairs - Typing

Typing Rules:

G |- {t1, t2} : T1 ¥ T2
(T-Pair)

G |- t1 : T1 G |- t2 : T2

G |- t.i : Ti
(T-Proj i)

G |- t : T1 ¥T2

Naive semantics: Cartesian product

T1 ¥ T2 = {(x,y) | x Œ T1 and y Œ T2}

Lesson 5: Extensions

7

1/31/02 Lesson 5 13

Properties of Pairs

1. access is positional -- order matters

 (3, true) ≠ (true, 3) Nat ¥ Bool ≠ Bool ¥ Nat

2. evaluation is left to right

 (print “x”, raise Fail) prints and then fails
 (raise Fail, print “x”) fails and does not print

3. projection is “strict” -- pair must be fully evaluated

1/31/02 Lesson 5 14

Tuples

Type constructors:

 {T1, T2, ..., Tn} or T1 ¥T2 ¥ ... ¥Tn

Tuple terms

 {t1, t2, ..., tn} or (t1, t2, ..., tn)

Projections

 t : {T1, T2, ..., Tn} => t.i : Ti (i = 1, ..., n)

Lesson 5: Extensions

8

1/31/02 Lesson 5 15

Properties of Tuples

• Evaluation and typing rules are the natural generalizations
 of those for tuples.

• Evaluation is left-to-right.

• Tuples are fully evaluated before projection is evaluated.

• Pairs are a special case of tuples.

Examples:

 {true, 1, 3} : {Bool, Nat, Nat} (or Bool ¥ Nat ¥ Nat)
 {true, 1} : {Bool, Nat} (equivalent to Bool ¥ Nat)

1/31/02 Lesson 5 16

Records

• Records are “labelled tuples”.

 {name = “John”, age = 23, student = true}
 : {name: String, age: Nat, student: Bool}

• Selection/projection is by label, not by position.

 let x = {name = “John”, age = 23, student = true}
 in if x.student then print x.name else unit

 t : {name: String, age: Nat, student: Bool}
 => t.name : String, t.age : Nat, t.student : Bool

• Components of a record are called fields.

Lesson 5: Extensions

9

1/31/02 Lesson 5 17

Records - Evaluation

• Evaluation of record terms is left to right, as for tuples.
• Tuples are fully evaluated before projection is evaluated.
• Order of fields matters for evaluation

 let x = ref 0
 in {a = !x, b = (x := 1; 2)}
 Æ* {a = 0, b = 2}

 let x = ref 0
 in {b = (x := 1; 2), a = !x}
 Æ* {b = 2, a = 1}

1/31/02 Lesson 5 18

Records - Field order

• Different record types can have the same labels:
 {name: String, age: Nat} ≠ {age: Nat, name: Bool}

• What about order of fields? Are these types equal?

 {name: String, age: Nat} = {age: Nat, name: String} ?

 We can choose either convention. In SML, field order is
 not relevant, and these two types are equal. In other
 languages, and in the text (for now), field order is important.
 and these two types are different.

Lesson 5: Extensions

10

1/31/02 Lesson 5 19

Extending Let with Patterns

let {name = n, age = a} = find(key)
 in if a > 21 then name else “anonymous”

The left hand side of a binding in a let expression can
be a record pattern, that is matched with the value of
the rhs of the binding.

We can also have tuple patterns:
 let (x,y) = coords(point) in ... x ... y ...

See Exercise 11.8.2 and Figure 11-8.

1/31/02 Lesson 5 20

Sum types

Types: T1 + T2

Terms: inl t
 inr t
 case t of inl x => t | inr x => t

Values: inl v
 inr v

Lesson 5: Extensions

11

1/31/02 Lesson 5 21

Sum types

Sum types represent disjoint, or discriminated unions

inl A inl B

B
A

inl

isl

outr

outl inr

Bool
isr

1/31/02 Lesson 5 22

Sum types

A + B = {(1,a) | a Œ A} » {(2,b) | b Œ B}

inl a = (1,a)
inr b = (2,b)
outl (1,a) = a
outr(2,b) = b
isl (1,a) = true; isl (2,b) = false
isr (1,a) = false; isr (2,b) = true

case z of inl x => t1 | inr y => t2 =
 if isl z then (lx. t1)(outl z) else (ly. t2)(outr z)

Lesson 5: Extensions

12

1/31/02 Lesson 5 23

Sums - Typing

G |- case t of inl x1 => t1 | inr x2=> t2 : T
(T-Case)

G |- t : T1 +T2 G, x1: T1 |- t1 : T

G |- t1 : T1
(T-Inl)

G |- inl t1 : T1 +T2

G |- t2 : T2
(T-Inr)

G |- inr t2 : T1 +T2

G, x2: T2 |- t2 : T

1/31/02 Lesson 5 24

Typing Sums

Note that terms do not have unique types:

 inl 5 : Nat + Nat and inl 5 : Nat + Bool

Can fix this by requiring type ascriptions with inl, inr:

G |- t1 : T1
(T-Inl)

G |- inl t1 as T1 +T2 : T1 +T2

G |- t2 : T2
(T-Inr)

G |- inr t2 as T1 +T2 : T1 +T2

Lesson 5: Extensions

13

1/31/02 Lesson 5 25

Labeled variants

Could generalize binary sum to n-ary sums, as we did going
from pairs to tuples. Instead, go directly to labeled sums:

type NatString = <nat: Nat, string: String>

a = <nat = 5> as NatString
b = <string = “abc”> as NatString

lx: NatString . case x
 of <nat = x> => numberOfDigits x

 | <string = y> => stringLength y

1/31/02 Lesson 5 26

Option

An option type is a useful special case of labeled variants.

type NatOption = <some: Nat, none: Unit>

someNat = lx: Nat . <some = x> as NatOption
 : Nat -> NatOption
noneNat = <none = unit> as NatOption : NatOption

half = lx: Nat . if equal(x, 2 * (x div 2)) then someNat(x div 2)
 else noneNat
 : Nat -> NatOption

Lesson 5: Extensions

14

1/31/02 Lesson 5 27

Enumerations

Enumerations are anonther common form of labeled variants.
They are a labeled sum of several copies of Unit.

type WeekDay = <monday: Unit, tuesday: Unit, wednesday: Unit,
 thursday: Unit, friday: Unit>

monday = <monday = unit> as WeekDay

type Bool = <true: Unit, false: Unit>
true = <true = unit> as Bool
false = <false = unit> as Bool

1/31/02 Lesson 5 28

ML Datatypes

ML datatypes are a restricted form of labeled variant type
 + recursion + parameterization

datatype NatString = Nat of Nat | String of String
fun size x = case x

 of Nat n => numberOfDigits n
 | String s => stringLength s

datatype NatOption = Some of Nat | None
datatype ‘a Option = Some of ‘a | None (‘a is a type variable)
datatype Bool = True | False
datatype ‘a List = Nil | Cons of ‘a * ‘a List (recursive type defn)

Lesson 5: Extensions

15

1/31/02 Lesson 5 29

General Recursion

The fixed point combinator (p. 65), can’t be defined in lÆ.
So we need to defined a special fix operator.

Terms: fix t

Evaluation

fix(lx: T. t) Æ [x ! (fix(lx: T. t))]t (E-FixBeta)

t1 Æ t1’

fix t1 Æ fix t1’
(E-Fix)

1/31/02 Lesson 5 30

General Recursion - Typing

Typing
G |- t1 : T1 -> T1

(T-Fix)
G |- fix t1 : T1

Derived form:

letrec x: T1 = t1 in t2
 =def let x = fix(lx: T1. t1) in t2

The argument t1 of fix is called a generator.

Lesson 5: Extensions

16

1/31/02 Lesson 5 31

Mutual recursion

The generator is a term of type T->T for some T, which is
typically a function type, but may be a tuple or record of
function types to define a family of mutually recursive functions.

ff = lieio: {iseven: Nat -> Bool, isodd: Nat -> Bool} .
 {iseven = lx: Nat . if iszero x then true

 else ieio.isodd (pred x),
 isodd = lx: Nat . if iszero x then false

 else ieio.iseven (pred x)}
 : T -> T where T is {iseven: Nat -> Bool, isodd: Nat -> Bool}

r = fix ff : {iseven: Nat -> Bool, isodd: Nat -> Bool}
iseven = r.iseven : Nat -> Bool

1/31/02 Lesson 5 32

Lists

Type: List T

Terms: nil[T]
 cons[T] t t
 isnil[T] t

 head[T] t
 tail[T] t

Values: nil[T]
 cons[T] v v

Lesson 5: Extensions

17

1/31/02 Lesson 5 33

Lists - Evaluation

Eval rules:

isnil[S](nil[T]) Æ true (E-IsnilNil)

head[S](cons[T] v1 v2) Æ v1 (E-HeadCons)

tail[S](cons[T] v1 v2) Æ v2 (E-TailCons)

plus usual congruence rules for evaluating arguments.

1/31/02 Lesson 5 34

Lists - Typing

G |- cons[T1] t1 t2 : List T1
(T-Cons)

G |- t1 : T1 G |- t2 : List T1

G |- isnil[T1] t : Bool
(T-Isnil)

G |- t : List T1

G |- nil[T1] : List T1 (T-Nil)

G |- head[T1] t : T1
(T-Head)

G |- t : List T1

G |- head[T1] t : List T1
(T-Tail)

G |- t : List T1

