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Type Reconstruction

• substitutions
• typing with constraint sets (type equations)
• unification: solving constraint sets
• principlal types
• let polymorphism
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Type substitutions

Language: lÆ[Bool, Nat] with type variables

A type substitution s is a finite mapping from type variables
to types.

    s = [X => Nat -> Nat, Y => Bool, Z => X -> Nat]

Type substitutions can be applied to types:  sT

    s(X -> Z)  =  (Nat -> Nat) -> (X -> Nat)

This extends pointwise to contexts:  s G
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Type substitutions

Language: lÆ[Bool, Nat] with type variables

A type substitution s is a finite mapping from type variables
to types.

    s = [X => Nat -> Nat, Y => Bool, Z => X -> Nat]

Type substitutions can be applied to types:  sT

    s(X -> Z)  =  (Nat -> Nat) -> (X -> Nat)

This extends pointwise to contexts:  s G

Composition of substitutions  
    s o g(X) = s (g X)  if X Œ dom g
                 = s X  otherwise
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Substitutions and typing

Thm:  If G |- t: T, then sG |- st: sT for any type subst. s.

Prf: induction on type derivation for G |- t: T.

Lesson 10: Type Reconstruction 6

"Solving" typing problems

Given G and t,  we can ask:

1. For every s, does there exist a T s.t. sG |- st: T?

2. Does there exist a s and a T s.t. sG |- st: T?

Question 1 leads to polymorphism, where T = sT' and
G |- t: T'.  The type variables are "quantified".

Question 2 is the basis for type reconstuction:  we think
of the type variables as unknowns to be solved for.

Defn: A solution for (G,t) is a pair (s, T) s.t. sG |- st: T.
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Example: solutions of a typing problem

    (∅,  lx:X. ly:Y. lz:Z . (x z) (y z))  has solutions

        [X => Nat -> Bool -> Nat, Y => Nat -> Bool, Z => Nat]

        [X => X1 -> X2 -> X3, Y => X1 -> X2, Z => X1]

Lesson 10: Type Reconstruction 8

Constraints

A constraint set C is a set of equations between types.
C = {Si = Ti | i Œ 1,..,n}.

A substitution s unifies (or satisfies) a constraint set C
if sSi = sTi  for every equation Si = Ti  in C.

A constraint typing relation  G |- t: T | C X   where X  is a
set of "fresh" type variables used in the constraint set C.
This relation (or judgement) is defined by a set of inference
rules.
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Constraint inference rules

G|- t1: T1 | C1 X 1         G |- t2: T2 | C2 X 2

X 1 « X 2 = X 1 « FV(T2) = X 2 « FV(T1) = ∅
     X œ X 1, X 2, t1, t2, T1, T2, C1, C2, G
          C = C1 » C2 » {T1 = T2 -> X}

      X  = X 1 » X 2 » {X}

G|- t1 t2: X | C X  

Inference rule for application 
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Constraint solutions

Defn:  Suppose G |- t: S | C X.  A solution for (G, t, S, C)
is a pair (s, T) s.t. s satisfies C and T = sS.

Thm:  [Soundness of Constraint Typing]
Suppose G |- t: S | C X.  If (s, T) is a solution for (G, t, S, C)
then it is also a solution for (G, t), i.e. sG |- st: T.

Thm:  [Completeness of Constraint Typing]
Suppose G |- t: S | C X.  If (s, T) is a solution for (G, t) then
there is a solution (s', T) for (G, t, S, C) s.t. s'\X = s.

Cor:  Suppose G |- t: S | C X.  There is a soln for (G, t) iff
there is a solution for (G, t, S, C).
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Unification

Defn:  s < s' if  s' =  g o s  for some g.

Defn:  A principle unifier (most general unifier) for a constraint
set C is a substitution s that satisfies C s.t. s < s' for any other
s' that satifies C.
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Unification algorithm

unify C =
if C = ∅ then [ ]
else let {S = T} » C' = C in

if S = T then unify(C')
else if S = X and X œ FV(T)
   then unify([X => T]C') o [X => T]
else if T = X and X œ FV(S)
   then unify([X => S]C') o [X => S]
else if S = S1 -> S2 and T = T1 -> T2

   then unify(C' » {S1 = T1, S2 = T2})
else fail

Thm: unify always terminates, and either fails or returns the 
principal unifier if a unifier exists.
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Principal Types

Defn: A principal solution for (G, t, S, C) is a solution (s, T)
s.t. for any other solution (s', T') we gave s < s'.

Thm: [Principal Types]
If (G, t, S, C) has a solution, then it has a principal one.  The
unify algorithm can be used to determine whether (G, t, S, C)
has a solution, and if so it calculates a principal one.
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Implicit Annotations

We can extend the syntax to allow lambda abstractions
without type annotations:  lx.t.

The corresponding type constraint rule supplies a fresh type
variable as an implicit annotation.

X œ X  G, x: X |- t1: T | C X 

 G,  |-  lx: X. t1: X -> T | C (X  » {X})
(CT-AbsInf)
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Let Polymorphism

let double = lf: Nat -> Nat. lx: Nat. f(f x)
in double (lx: Nat. succ x) 2

let double = lf: Bool -> Bool. lx: Bool. f(f x)
in double (lx: not x) false

An attempt at a generic double:

let double = lf: X -> X. lx: X. f(f x)
in let a = double (lx: Nat. succ x) 2
in let b = double (lx: not x) false

  ==>  X -> X = Nat -> Nat = Bool -> Bool
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Macro-like let rule

let double = lf: X -> X. lx: X. f(f x)
in let a = double (lx: Nat. succ x) 2
in let b = double (lx: not x) false

could be typed as:

let a = (lf: X -> X. lx: X. f(f x)) (lx: Nat. succ x) 2
in let b = (lf: X' -> X'. lx: X'. f(f x)) (lx: not x) false

or, using implicit type annotations:

let a = (lf. lx. f(f x)) (lx: Nat. succ x) 2
in let b = (lf. lx. f(f x)) (lx: not x) false
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Macro-like let rule

 G |- [x => t1]t2: T2 G |- t1: T1

 G |- let x = t1 in t2: T2

(T-LetPoly)

The substitution can create multiple independent copies
of t1, each of which can be typed independently (assuming
implicit annotations, which introduce separate type variables
for each copy).
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Type schemes

Add quantified type schemes:

    T  ::=   X  |  Bool  |  Nat  |  T -> T
    P  ::=    T  |  "X . P

Contexts become finite mappings from term variables to type
schemes:

     G  ::=  ∅  |  G, x : P

Examples of type schemes:

    Nat,   X -> Nat,   "X. X -> Nat,   "X."Y. X -> Y -> X
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let-polymorphism rules

 G, x : "X .T1 |- t2: T2 G |- t1: T1

 G |- let x = t1 in t2: T2

(T-LetPoly)

G, x : "X .T |- x: [X => X ']T

where X ' is a set of fresh type variables

where X ' are the type variables free in T1

but not free in  G

(T-PolyInst)
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let-polymorphism example

let double = lf. lx. f(f x)
in let a = double (lx: Nat. succ x) 2
in let b = double (lx: not x) false
in (a,b)

double : "X. (X -> X) -> X -> X

(Y -> Y) -> Y -> Y

(Z -> Z) -> Z -> Z

Then unification yields [Y => Nat, Z => Bool].
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let-polymorphism and references

Let ref, !, and := be polymorphic functions with types

ref :  "X. X -> Ref(X)
!     :  "X. Ref(X) -> X
:=   :  "X. Ref(X) *X -> Unit

let r = ref(lx. x)
in let a = r := (lx: Nat. succ x)
in let b = !r false
in ()

r : "X. Ref(X -> X)

Ref(Bool -> Bool)

Ref(Nat -> Nat)

We've managed to apply (lx: Nat. succ x) to false! 
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The value restriction

We correct this unsoundness by only allowing polymorphic
generalization at let declarations if the expression is a
value.  This is called the value restriction.

let r = ref(lx. x)
in let a = r := (lx: Nat. succ x)
in let b = !r false
in ()

Ref(Nat -> Nat)

Ref(Nat -> Nat)  [X => Nat]

Now we get a type error in  " !r false ". 

r : Ref(X -> X)
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Let polymorphism with recursive values

Another problem comes when we add recursive value
definitions.

    let rec f = lx. t in ...

is typed as though it were written

    let f = fix(lf. lx. t) in ...

where  fix : "X. (X -> X) -> X
except that the type of the outer f can be generalized.

Note that the inner f is l-bound, not let bound, so it cannot
be polymorphic within the body t.
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Polymorphic Recursion

What can we do about recursive function definitions where
the function is polymorphic and is used polymorphically in
the body of it's definition?  (This is called polymorphic
recursion.)

    let rec f = lx. (f true; f 3; x)

Have to use a fancier form of type reconstruction:  the
iterative Mycroft-Milner algorithm.


