Lesson 10 Type Reconstruction

2/26 Chapter 22

Type Reconstruction

- substitutions
- typing with constraint sets (type equations)
- · unification: solving constraint sets
- principlal types
- · let polymorphism

Lesson 10: Type Reconstruction

Type substitutions

Language: □ [Bool, Nat] with type variables

A type substitution \square is a finite mapping from type variables to types.

$$\square$$
 = [X => Nat -> Nat, Y => Bool, Z => X -> Nat]

Type substitutions can be applied to types: $\Box T$

$$\Box(X \rightarrow Z) = (Nat \rightarrow Nat) \rightarrow (X \rightarrow Nat)$$

This extends pointwise to contexts: \square

Lesson 10: Type Reconstruction

3

Type substitutions

Language: □ [Bool, Nat] with type variables

A type substitution \square is a finite mapping from type variables to types.

$$\square$$
 = [X => Nat -> Nat, Y => Bool, Z => X -> Nat]

Type substitutions can be applied to types: $\Box T$

$$\Box(X \rightarrow Z) = (Nat \rightarrow Nat) \rightarrow (X \rightarrow Nat)$$

This extends pointwise to contexts: \square

Composition of substitutions

Lesson 10: Type Reconstruction

Substitutions and typing

Thm: If $| \cdot | \cdot |$ then $| \cdot | \cdot |$ to any type subst. $| \cdot |$.

Prf: induction on type derivation for \Box |- t: T.

Lesson 10: Type Reconstruction

5

"Solving" typing problems

Given \square and t, we can ask:

- 1. For every \square , does there exist a T s.t. $\square\square$ |- \square t: T?
- 2. Does there exist a \square and a T s.t. $\square\square$ |- \square t: T?

Question 1 leads to polymorphism, where $T = \Box T'$ and \Box |- t: T'. The type variables are "quantified".

Question 2 is the basis for type reconstruction: we think of the type variables as unknowns to be solved for.

Defn: A solution for ([],t) is a pair ([],T) s.t. [][] |- []t:T.

Lesson 10: Type Reconstruction

Example: solutions of a typing problem

(\varnothing , [x:X.]y:Y. [z:Z. (x z) (y z)) has solutions

[X => Nat -> Bool -> Nat, Y => Nat -> Bool, Z => Nat]

 $[X \Rightarrow X1 \rightarrow X2 \rightarrow X3, Y \Rightarrow X1 \rightarrow X2, Z \Rightarrow X1]$

Lesson 10: Type Reconstruction

7

Constraints

A constraint set C is a set of equations between types. $C = \{S_i = T_i \mid i \subseteq 1,...,n\}.$

A substitution \square unifies (or satisfies) a constraint set C if $\square S_i = \square T_i$ for every equation $S_i = T_i$ in C.

A constraint typing relation $| - + : T | C \mathcal{X}$ where \mathcal{X} is a set of "fresh" type variables used in the constraint set C. This relation (or judgement) is defined by a set of inference rules.

Lesson 10: Type Reconstruction

Constraint inference rules

Inference rule for application

$$\Box | - \dagger_1 : \mathsf{T}_1 | C_1 \mathcal{X}_1 \qquad \Box | - \dagger_2 : \mathsf{T}_2 | C_2 \mathcal{X}_2$$

$$\mathcal{X}_1 \Box \mathcal{X}_2 = \mathcal{X}_1 \Box \mathsf{FV}(\mathsf{T}_2) = \mathcal{X}_2 \Box \mathsf{FV}(\mathsf{T}_1) = \emptyset$$

$$\times \Box \mathcal{X}_1, \mathcal{X}_2, \dagger_1, \dagger_2, \mathsf{T}_1, \mathsf{T}_2, C_1, C_2, \Box$$

$$C = C_1 \Box C_2 \Box \{\mathsf{T}_1 = \mathsf{T}_2 \to \mathsf{X}\}$$

$$\mathcal{X} = \mathcal{X}_1 \Box \mathcal{X}_2 \Box \{\mathsf{X}\}$$

$$\Box | - \dagger_1 \dagger_2 : \mathsf{X} | C \mathcal{X}$$

Lesson 10: Type Reconstruction

9

Constraint solutions

Defn: Suppose \Box |- t: S | C X. A solution for $(\Box$, t, S, C) is a pair $(\Box$, T) s.t. \Box satisfies C and T = $\Box S$.

Thm: [Soundness of Constraint Typing] Suppose \Box |- t: S | C X. If (\Box, T) is a solution for (\Box, t, S, C) then it is also a solution for (\Box, t) , i.e. $\Box\Box$ |- \Box t: T.

Thm: [Completeness of Constraint Typing] Suppose \Box |- t: S | C X. If $(\Box$, T) is a solution for $(\Box$, t) then there is a solution $(\Box'$, T) for $(\Box$, t, S, C) s.t. $\Box' \setminus X = \Box$.

Cor: Suppose \Box |- t: S | C \mathcal{X} . There is a soln for (\Box, t) iff there is a solution for (\Box, t, S, C) .

Lesson 10: Type Reconstruction

Unification

```
Defn: □ < □' if □' = □ o □ for some □
```

Defn: A principle unifier (most general unifier) for a constraint set C is a substitution \square that satisfies C s.t. $\square < \square'$ for any other \square' that satisfies C.

Lesson 10: Type Reconstruction

11

Unification algorithm

```
unify C =

if C = \emptyset then []

else let \{S = T\} \square C' = C in

if S = T then unify(C')

else if S = X and X \square FV(T)

then unify([X => T]C') \circ [X => T]

else if T = X and X \square FV(S)

then unify([X => S]C') \circ [X => S]

else if S = S_1 \rightarrow S_2 and T = T_1 \rightarrow T_2

then unify(C' \square \{S_1 = T_1, S_2 = T_2\})

else fail
```

Thm: unify always terminates, and either fails or returns the principal unifier if a unifier exists.

Lesson 10: Type Reconstruction

Principal Types

Defn: A principal solution for ([], t, S, C) is a solution ([], T) s.t. for any other solution ([]', T') we gave [] < []'.

Thm: [Principal Types] If ([], t, S, C) has a solution, then it has a principal one. The unify algorithm can be used to determine whether ([], t, S, C)

has a solution, and if so it calculates a principal one.

Lesson 10: Type Reconstruction

13

Implicit Annotations

We can extend the syntax to allow lambda abstractions without type annotations: $\Box x.t.$

The corresponding type constraint rule supplies a fresh type variable as an implicit annotation.

$$\frac{X \square \mathscr{X} \quad \square, x: X \mid - \uparrow_1: T \mid C \mathscr{X}}{\square, \mid - \mid \square x: X. \uparrow_1: X \rightarrow T \mid C (\mathscr{X} \mid \{X\})}$$
 (CT-AbsInf)

Lesson 10: Type Reconstruction

Let Polymorphism

```
let double = \Box f: Nat -> Nat. \Box x: Nat. f(f x) in double (\Box x: Nat. succ x) 2
```

```
let double = \Boxf: Bool -> Bool. \Boxx: Bool. f(f x) in double (\Boxx: not x) false
```

An attempt at a *generic* double:

```
let double = \Boxf: X -> X. \Boxx: X. f(f x)
in let a = double (\Boxx: Nat. succ x) 2
in let b = double (\Boxx: not x) false
==> X -> X = Nat -> Nat = Bool -> Bool
```

Lesson 10: Type Reconstruction

15

Macro-like let rule

```
let double = \Box f: X \rightarrow X. \Box x: X. f(f x) in let a = double (\Box x: Nat. succ x) 2 in let b = double (\Box x: not x) false
```

could be typed as:

```
let a = (\Boxf: X -> X. \Boxx: X. f(f x)) (\Boxx: Nat. succ x) 2 in let b = (\Boxf: X' -> X'. \Boxx: X'. f(f x)) (\Boxx: not x) false
```

or, using implicit type annotations:

```
let a = (\Boxf. \Boxx. f(f x)) (\Boxx: Nat. succ x) 2 in let b = (\Boxf. \Boxx. f(f x)) (\Boxx: not x) false
```

Lesson 10: Type Reconstruction

Macro-like let rule

The substitution can create multiple independent copies of t_1 , each of which can be typed independently (assuming implicit annotations, which introduce separate type variables for each copy).

Lesson 10: Type Reconstruction

17

Type schemes

Add quantified type schemes:

$$T ::= X \mid Bool \mid Nat \mid T \rightarrow T$$

 $P ::= T \mid \Box X \cdot P$

Contexts become finite mappings from term variables to type schemes:

$$\square ::= \emptyset \mid \square, x : P$$

Examples of type schemes:

Nat,
$$X \rightarrow Nat$$
, $\Box X. X \rightarrow Nat$, $\Box X. \Box Y. X \rightarrow Y \rightarrow X$

Lesson 10: Type Reconstruction

let-polymorphism rules

where $\boldsymbol{\mathcal{X}}$ are the type variables free in T_1 but not free in \square

$$[], x : [] x . T | - x : [x \Rightarrow x'] T$$
 (T-PolyInst)

where $\boldsymbol{\mathcal{X}}$ is a set of fresh type variables

Lesson 10: Type Reconstruction

19

let-polymorphism example

double: $[] X. (X \rightarrow X) \rightarrow X \rightarrow X]$ let double = [] f. [] x. f(f x)in let a = double ([] x: Nat. succ x) 2in let b = double ([] x: not x) falsein (a,b) $(Y \rightarrow Y) \rightarrow Y \rightarrow Y$

Then unification yields [$Y \Rightarrow Nat, Z \Rightarrow Bool$].

Lesson 10: Type Reconstruction

let-polymorphism and references

Let ref, !, and := be polymorphic functions with types

ref : $\square X. X \rightarrow Ref(X)$! : $\square X. Ref(X) \rightarrow X$:= : $\square X. Ref(X) *X \rightarrow Unit$

```
let r = ref([x. x)]

in let a = r := ([x: Nat. succ x)]

in let b = !r false

in ()

Ref(Bool -> Bool)
```

We've managed to apply ($\square x$: Nat. succ x) to false!

Lesson 10: Type Reconstruction

21

The value restriction

We correct this unsoundness by only allowing polymorphic generalization at let declarations if the expression is a *value*. This is called the <u>value</u> restriction.

```
let r = ref([x. x)]

in let a = r := ([x: Nat. succ x)]

in let b = !r false

in ()

Ref(Nat -> Nat) [X => Nat]
```

Now we get a type error in "!r false".

Lesson 10: Type Reconstruction

Let polymorphism with recursive values

Another problem comes when we add recursive value definitions.

```
let rec f = [x, t \text{ in } ...
```

is typed as though it were written

let
$$f = fix(\Box f. \Box x. t)$$
 in ...

where $fix : [X, (X \rightarrow X) \rightarrow X]$

except that the type of the outer f can be generalized.

Note that the inner f is \square -bound, not let bound, so it cannot be polymorphic within the body t.

Lesson 10: Type Reconstruction

23

Polymorphic Recursion

What can we do about recursive function definitions where the function is polymorphic and is used polymorphically in the body of it's definition? (This is called polymorphic recursion.)

```
let rec f = [x] (f \text{ true}; f 3; x)
```

Have to use a fancier form of type reconstruction: the iterative Mycroft-Milner algorithm.

Lesson 10: Type Reconstruction