
Lesson 0: Course Introduction

1

CMSC 336
Type Systems for Programming Languages

David MacQueen
Winter, 2003

www.classes.cs.uchicago.edu/classes/
archive/2003/winter/CS33600

1/7/03 Type Systems, Intro 2

CS Theory

• Computer Science =
 applied mathematics + engineering

• CS theory is the applied mathematics part

• much of this concerns formalisms for
computation (e.g. models of computation,
programming languages) and their
metatheory

Lesson 0: Course Introduction

2

1/7/03 Type Systems, Intro 3

Theory: Computability, Complexity

• computability theory
– models of computation
– what is computable, what is not

• complexity theory and analysis of algorithms
– how hard or costly is it to compute something
– what is feasibly computable
– applications: design of efficient algorithms

1/7/03 Type Systems, Intro 4

Theory of programming

• semantics of computation
– what do terms in a formalism mean?

• logics of computation (programming logics)
– specifying computational tasks and verifying

that programs satisfy their specifications

• computational logic
– systems for automatic/interactive deduction

• type theory and type systems
– which programs “make sense”

Lesson 0: Course Introduction

3

1/7/03 Type Systems, Intro 5

What are type systems?

“A type system is a tractable syntactic
method for proving the absence of certain
program behaviors by classifying phrases
according to the kinds of values they
compute.” (Pierce, p. 1)

“A type system can be regarded as
calculating a kind of static approximation to
the run-time behaviors of the terms in a
program.” (Reynolds)

1/7/03 Type Systems, Intro 6

Thesis: Static typing is fundamental

Static typing, based on a sound type
system (“well-typed programs do not go
wrong”) is a basic requirement for robust
systems programming. (Cardelli)

Lesson 0: Course Introduction

4

1/7/03 Type Systems, Intro 7

Why Types are Useful

• error detection: early detection of common
programming errors

• safety: well typed programs do not go wrong
• design: types provide a language and discipline

for design of data structures and program
interfaces

• abstraction: types enforce language and
programmer abstractions

1/7/03 Type Systems, Intro 8

Why Types are Useful (cont)

• verification: properties and invariants
expressed in types are verified by the
compiler (“a priori guarantee of
correctness”)

• software evolution: support for orderly
evolution of software
– consequences of changes can be traced

• documentation: types express programmer
assumptions and are verified by compiler

Lesson 0: Course Introduction

5

1/7/03 Type Systems, Intro 9

Some history

• 1870s: formal logic (Frege), set theory (Cantor)
• 1910s: ramified types (Whitehead and Russell)
• 1930s: untyped lambda calculus (Church)
• 1940s: simply typed lambda calc. (Church)
• 1960s: Automath (de Bruijn); Curry-Howard

correspondence; Curry-Hindley type inference;
Lisp, Simula, ISWIM

• 1970s: Martin-Löf type theory; System F (Girard);
polymorphic lambda calc. (Reynolds); polymorphic
type inference (Milner), ML, CLU

1/7/03 Type Systems, Intro 10

Some History (cont)

• 1980s: NuPRL, Calculus of Constructions,
ELF, linear logic; subtyping (Reynolds,
Cardelli, Mitchell), bounded quantification;
dependent types, modules (Burstall,
Lampson, MacQueen)

• 1990s: higher-order subtyping, OO type
systems, object calculi; typed intermediate
languages, typed assembly languages

Lesson 0: Course Introduction

6

1/7/03 Type Systems, Intro 11

Course Overview

• Part I: untyped systems
– abstract syntax
– inductive definitions and proofs
– operational semantics
– inference rules

• Part II: simply typed lambda calculus
– types and typing rules
– basic constructs: products, sums, functions, ...
– intro to type safety

1/7/03 Type Systems, Intro 12

Course Overview (cont)

• Part III: subtyping
– metatheory
– case studies (imperative objects)

• Part IV: recursive types
– iso-recursive and equi-recursive forms
– metatheory (coinduction)

• Part V: polymorphism
– ML-style type reconstruction
– System F
– polymorphism and subtyping: bounded quantifiers

Lesson 0: Course Introduction

7

1/7/03 Type Systems, Intro 13

Course Overview (cont)

• Part VI: Type operators
– higher-order type constructs
– System Fw

– subtyping: System F<:
w

– case study: functional objects

1/7/03 Type Systems, Intro 14

Potential Advanced Topics

• type systems as logics
• denotational semantics of programs and

types
• module systems
• full-featured object-oriented languages

Lesson 0: Course Introduction

8

1/7/03 Type Systems, Intro 15

Required background

The course is self-contained, but the
following will be useful:

– “mathematical maturity”
– some familiarity with (naive) set theory,

elementary logic, (structural) induction
– some familiarity with a higher-order functional

language (e.g. scheme or ML or Haskell)

1/7/03 Type Systems, Intro 16

Implementation

• Several chapters present implementations
of type checkers.

• The programming language used in the text
is a simple subset of Ocaml. In the course,
I will substitute code in a similar subset of
Standard ML.

• For documentation/tutorials on Standard
ML, see www.smlnj.org

