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Outline

Data encapsulation, ADT, API
Struct and typedef
Classes
Define directives
Private and public members
Constructors
Destructors
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Data Encapsulation

Abstract data types (ADT)
Separate interface from implementation.
All access to data is through the interface.
Application program(ming) interface (API)
Benefits
• Modularity, portability
• Data integrity

Design methods
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Struct

Create new data type by grouping data 
members (of other types).
General form:
struct newType {

Type1 member1;

Type2 member2;

…

};

Notice ; after definition.
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Struct Examples

struct Student {

int SID;

float gpa;

int age;

};

struct ListNode {

int data;

ListNode *next;

};

Student joe;
Student jane = {11111, 4.0, 19};
ListNode head;
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Working with Structs

Access data members:
name.member (name is a struct)
name->member (name is a pointer to a struct)

Dynamic allocation of struct:
new newType (returns a pointer to a struct)

Copy and assignment
Student kim = jane; (copy)

Student *leo = new Student;

*leo = kim; (assignment)
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Typedef

Define synonym name (alias) for a type:
typedef Type newName;

Examples:
typedef int number;

typedef int[20] controls;

typedef double *doublePtr; 

typedef ListNode *ListNodePtr;

struct ListNode {

int data;

ListNodePtr next; 

}
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Classes

Basic building block of C++ programs
• Equivalent to structs.
General form:
class ClassName {
private:

…members…

public:

…members…

};

Can be used as Type

Interface (outside view)

Internals (inside view)

data and/or functions
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Class Definition

Often a class is defined in .h (or .hh) file and 
implemented in .C or .cc file.
Implementation is definition of member 
functions.
Start .h file with:
#ifndef ClassNameH
#define ClassNameH
End .h file with:
#endif

Multiple #includes will
include .h file only once
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Class Implementation

Outside of class definition, member 
functions are prefaced by ClassName::
Access members (both data and functions) 
similar to struct.
name.member (name is an object)
name->member(name is a pointer to an object)
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Private and Public Members

Private data members and private member 
functions can be invoked only within class 
implementation, i.e. member function definitions.
Public members can be accessed anywhere.

class Calc {

void helper(…);

public:

int add(…);

};

int Calc::add(…) {
…
helper(…);
…

};
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Constructors
Initialize object when created.
• Allocate memory for private data members if 

necessary.
General form:
ClassName(…);

Member function with the same name as the 
class and no return type.
Many constructors are allowed.
• Argument lists must differ.

Default constructor: either no arguments or all 
arguments have default values.
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Destructors

Invoked when object is deleted:
• Explicit: delete
• Implicit: on function returns
Should deallocate all dynamically allocated 
memory within object.
General form:
~ClassName();

At most one destructor; no arguments, no 
return type.
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Linked List Example

Simple singly linked list
Class interface
Class implementation


