
1

CS11600: Introduction to 
Computer Programming (C++)

Lecture 7

Svetlozar Nestorov
University of Chicago

1/20/2003 Svetlozar Nestorov, CS 116: Intro to Programming II 2

Outline

Data encapsulation, ADT, API
Struct and typedef
Classes
Define directives
Private and public members
Constructors
Destructors

1/20/2003 Svetlozar Nestorov, CS 116: Intro to Programming II 3

Data Encapsulation

Abstract data types (ADT)
Separate interface from implementation.
All access to data is through the interface.
Application program(ming) interface (API)
Benefits
• Modularity, portability
• Data integrity

Design methods
1/20/2003 Svetlozar Nestorov, CS 116: Intro to Programming II 4

Struct

Create new data type by grouping data 
members (of other types).
General form:
struct newType {

Type1 member1;

Type2 member2;

…

};

Notice ; after definition.

1/20/2003 Svetlozar Nestorov, CS 116: Intro to Programming II 5

Struct Examples

struct Student {

int SID;

float gpa;

int age;

};

struct ListNode {

int data;

ListNode *next;

};

Student joe;
Student jane = {11111, 4.0, 19};
ListNode head;

1/20/2003 Svetlozar Nestorov, CS 116: Intro to Programming II 6

Working with Structs

Access data members:
name.member (name is a struct)
name->member (name is a pointer to a struct)

Dynamic allocation of struct:
new newType (returns a pointer to a struct)

Copy and assignment
Student kim = jane; (copy)

Student *leo = new Student;

*leo = kim; (assignment)



2

1/20/2003 Svetlozar Nestorov, CS 116: Intro to Programming II 7

Typedef

Define synonym name (alias) for a type:
typedef Type newName;

Examples:
typedef int number;

typedef int[20] controls;

typedef double *doublePtr; 

typedef ListNode *ListNodePtr;

struct ListNode {

int data;

ListNodePtr next; 

}

1/20/2003 Svetlozar Nestorov, CS 116: Intro to Programming II 8

Classes

Basic building block of C++ programs
• Equivalent to structs.
General form:
class ClassName {
private:

…members…

public:

…members…

};

Can be used as Type

Interface (outside view)

Internals (inside view)

data and/or functions

1/20/2003 Svetlozar Nestorov, CS 116: Intro to Programming II 9

Class Definition

Often a class is defined in .h (or .hh) file and 
implemented in .C or .cc file.
Implementation is definition of member 
functions.
Start .h file with:
#ifndef ClassNameH
#define ClassNameH
End .h file with:
#endif

Multiple #includes will
include .h file only once

1/20/2003 Svetlozar Nestorov, CS 116: Intro to Programming II 10

Class Implementation

Outside of class definition, member 
functions are prefaced by ClassName::
Access members (both data and functions) 
similar to struct.
name.member (name is an object)
name->member(name is a pointer to an object)

1/20/2003 Svetlozar Nestorov, CS 116: Intro to Programming II 11

Private and Public Members

Private data members and private member 
functions can be invoked only within class 
implementation, i.e. member function definitions.
Public members can be accessed anywhere.

class Calc {

void helper(…);

public:

int add(…);

};

int Calc::add(…) {
…
helper(…);
…

};

1/20/2003 Svetlozar Nestorov, CS 116: Intro to Programming II 12

Constructors
Initialize object when created.
• Allocate memory for private data members if 

necessary.
General form:
ClassName(…);

Member function with the same name as the 
class and no return type.
Many constructors are allowed.
• Argument lists must differ.

Default constructor: either no arguments or all 
arguments have default values.



3

1/20/2003 Svetlozar Nestorov, CS 116: Intro to Programming II 13

Destructors

Invoked when object is deleted:
• Explicit: delete
• Implicit: on function returns
Should deallocate all dynamically allocated 
memory within object.
General form:
~ClassName();

At most one destructor; no arguments, no 
return type.

1/20/2003 Svetlozar Nestorov, CS 116: Intro to Programming II 14

Linked List Example

Simple singly linked list
Class interface
Class implementation


