Agenda

• Speech Recognition
 – Hidden Markov Models
 • Uncertain observations
 • Recognition: Viterbi, Stack/A*
 • Training the model: Baum-Welch
Speech Recognition Model

• Question: Given signal, what words?
• Problem: uncertainty
 – Capture of sound by microphone, how phones produce sounds, which words make phones, etc
• Solution: Probabilistic model
 – $P(\text{words}|\text{signal}) = \frac{P(\text{signal}|\text{words})P(\text{words})}{P(\text{signal})}$
 – Idea: Maximize $P(\text{signal}|\text{words})*P(\text{words})$
 • $P(\text{signal}|\text{words})$: acoustic model; $P(\text{words})$: lang model
Hidden Markov Models (HMMs)

• An HMM is:
 – 1) A set of states: \(Q = q_0, q_1, \ldots, q_k \)
 – 2) A set of transition probabilities: \(A = a_{01}, \ldots, a_{mn} \)
 • Where \(a_{ij} \) is the probability of transition \(q_i \rightarrow q_j \)
 – 3) Observation probabilities: \(B = b_i(o_t) \)
 • The probability of observing \(o_t \) in state \(i \)
 – 4) An initial probability dist over states: \(\pi_i \)
 • The probability of starting in state \(i \)
 – 5) A set of accepting states
Acoustic Model

• 3-state phone model for [m]
 – Use Hidden Markov Model (HMM)

 Observation probabilities

 Transition probabilities

 Onset 0.3
 C1: 0.5
 C2: 0.2
 C3: 0.3
 Mid 0.9
 C3: 0.2
 C4: 0.7
 End 0.4
 C4: 0.1
 C6: 0.4
 Final 0.6
 C6: 0.5

 – Probability of sequence: sum of prob of paths
Viterbi Algorithm

• Find BEST word sequence given signal
 – Best $P(\text{words}|\text{signal})$
 – Take HMM & VQ sequence
 • \Rightarrow word seq (prob)

• Dynamic programming solution
 – Record most probable path ending at a state i
 • Then most probable path from i to end
 • $O(bMn)$
Viterbi Code

Function Viterbi(observations length T, state-graph) returns best-path
Num-states<-num-of-states(state-graph)
Create path prob matrix viterbi[num-states+2,T+2]
Viterbi[0,0]<- 1.0
For each time step t from 0 to T do
 for each state s from 0 to num-states do
 for each transition s’ from s in state-graph
 new-score<-viterbi[s,t]*at[s,s’]*bs’(ot)
 if ((viterbi[s’,t+1]=0) || (viterbi[s’,t+1]<new-score))
 then
 viterbi[s’,t+1] <- new-score
 back-pointer[s’,t+1]<-s
 Backtrace from highest prob state in final column of viterbi[] & return
Enhanced Decoding

• Viterbi problems:
 – Best phone sequence not necessarily most probable word sequence
 • E.g. words with many pronunciations less probable
 – Dynamic programming invariant breaks on trigram

• Solution 1:
 – Multipass decoding:
 • Phone decoding -> n-best lattice -> rescoring (e.g. tri)
Enhanced Decoding: A*

- Search for highest probability path
 - Use forward algorithm to compute acoustic match
 - Perform **fast match** to find next likely words
 - Tree-structured lexicon matching phone sequence
 - Estimate path cost:
 - Current cost + underestimate of total
 - Store in priority queue
 - Search best first
Modeling Sound, Redux

- **Discrete VQ codebook values**
 - Simple, but inadequate
 - Acoustics highly variable

- **Gaussian pdfs over continuous values**
 - Assume normally distributed observations
 - Typically sum over multiple shared Gaussians
 - “Gaussian mixture models”
 - Trained with HMM model

\[
b_j(o_t) = \frac{1}{\sqrt{(2\pi)|\sum_j|}} e^{-\frac{1}{2}((o_t-\mu_j)^T)(\sum_j^{-1})(o_t-\mu_j))}
\]
Learning HMMs

- Issue: Where do the probabilities come from?
- Solution: Learn from data
 - Trains transition \((a_{ij})\) and emission \((b_j)\) probabilities
 - Typically assume structure
 - Baum-Welch aka forward-backward algorithm
 - Iteratively estimate counts of transitions/emitted
 - Get estimated probabilities by forward comput’n
 - Divide probability mass over contributing paths
Forward Probability

$$\alpha_j(1) = a_{1j}b_j(o_1), 1 < j < N$$

$$\alpha_j(t) = \left[\sum_{i=2}^{N-1} \alpha_i(t-1)a_{ij} \right] b_j(o_t)$$

$$P(O \mid \lambda) = \alpha_N(T) = \sum_{i=2}^{N-1} \alpha_i(T)a_{iN}$$

Where α is the forward probability, t is the time in utterance, i, j are states in the HMM, a_{ij} is the transition probability, $b_j(o_t)$ is the probability of observing o_t in state bj, N is the final state, T is the last time, and 1 is the start state.
Backward Probability

\[\beta_i (T) = a_{iN} \]

\[\beta_i (t) = \sum_{i=2}^{N-1} a_{ij} b_j (o_{t+1}) \beta_j (t+1) \]

\[P(O | \lambda) = \alpha_N (T) = \beta_1 (T) = \sum_{j=2}^{N-1} a_{1j} b_j (o_1) \beta_j (1) \]

Where \(\beta \) is the backward probability, \(t \) is the time in utterance, \(i,j \) are states in the HMM, \(a_{ij} \) is the transition probability, \(b_j(o_t) \) is the probability of observing \(o_t \) in state \(b_j \), \(N \) is the final state, \(T \) is the last time, and \(1 \) is the start state.
Re-estimating

- Estimate transitions from i->j

\[\tau_t(i, j) = \frac{\alpha_i(t)a_{ij}b_j(o_t)\beta_j(t+1)}{\alpha_N(T)} \]

\[\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \tau_t(i, j)}{\sum_{t=1}^{T-1} \sum_{j=1}^{N} \tau_t(i, j)} \]

- Estimate observations in j

\[\sigma_j(t) = \frac{P(q_t = j, O | \lambda)}{P(O | \lambda)} = \frac{\alpha_j(t)\beta_j(t)}{P(O | \lambda)} \]

\[\hat{b}_j(v_k) = \frac{\sum_{t=1, s.t. o_t = v_k}^{T} \sigma_j(t)}{\sum_{t=1}^{T} \sigma_j(t)} \]
ASR Training

• Models to train:
 – Language model: typically tri-gram
 – Observation likelihoods: B
 – Transition probabilities: A
 – Pronunciation lexicon: sub-phone, word

• Training materials:
 – Speech files – word transcription
 – Large text corpus
 – Small phonetically transcribed speech corpus
Training

• Language model:
 – Uses large text corpus to train n-grams
 • 500 M words

• Pronunciation model:
 – HMM state graph
 – Manual coding from dictionary
 • Expand to triphone context and sub-phone models
HMM Training

• Training the observations:
 – E.g. Gaussian: set uniform initial mean/variance
 • Train based on contents of small (e.g. 4hr) phonetically labeled speech set (e.g. Switchboard)

• Training A&B:
 – Forward-Backward algorithm training
Does it work?

• Yes:
 – 99% on isolate single digits
 – 95% on restricted short utterances (air travel)
 – 80+% professional news broadcast

• No:
 – 55% Conversational English
 – 35% Conversational Mandarin
 – ?? Noisy cocktail parties
Speech Synthesis

• Text to speech produces
 – Sequence of phones, phone duration, phone pitch

• Most common approach:
 – Concatentative synthesis
 • Glue waveforms together

• Issue: Phones depend heavily on context
 – Diphone models: mid-point to mid-point
 • Captures transitions, few enough contexts to collect (1-2K)
Speech Synthesis: Prosody

• Concatenation intelligible but unnatural
• Model duration and pitch variation
 – Could extract pitch contour directly
 – Common approach: TD-PSOLA
 • Time-domain pitch synchronous overlap and add
 – Center frames around pitchmarks to next pitch period
 – Adjust prosody by combining frames at pitchmarks for desired pitch and duration
 – Increase pitch by shrinking distance b/t pitchmarks
 – Can be squeaky
Speech Recognition as Modern AI

• Draws on wide range of AI techniques
 – Knowledge representation & manipulation
 • Optimal search: Viterbi decoding
 – Machine Learning
 • Baum-Welch for HMMs
 • Nearest neighbor & k-means clustering for signal id
 – Probabilistic reasoning/Bayes rule
 • Manage uncertainty in signal, phone, word mapping

• Enables real world application