Entropy &
Hidden Markov Models

Natural Language Processing
CMSC 35100
April 22, 2003
Agenda

• Evaluating N-gram models
 – Entropy & perplexity
 • Cross-entropy, English

• Speech Recognition
 – Hidden Markov Models
 • Uncertain observations
 • Recognition: Viterbi, Stack/A*
 • Training the model: Baum-Welch
Evaluating n-gram models

• Entropy & Perplexity
 – Information theoretic measures
 – Measures information in grammar or fit to data
 – Conceptually, lower bound on # bits to encode

• Entropy: $H(X)$: X is a random var, p: prob fn

$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$

– E.g. 8 things: number as code => 3 bits/trans
– Alt. short code if high prob; longer if lower
 • Can reduce

• Perplexity: 2^H
 – Weighted average of number of choices
Entropy of a Sequence

• Basic sequence
 \[\frac{1}{n} H(W_1^n) = -\frac{1}{n} \sum_{W_1^n \in L} p(W_1^n) \log_2 p(W_1^n) \]

• Entropy of language: infinite lengths
 – Assume stationary
 & ergodic
 \[H(L) = \lim_{n \to \infty} -\frac{1}{n} \sum_{W \in L} p(w_1, \ldots, w_n) \log p(w_1, \ldots, w_n) \]
 \[H(L) = \lim_{n \to \infty} -\frac{1}{n} \log p(w_1, \ldots, w_n) \]
Cross-Entropy

• Comparing models
 – Actual distribution unknown
 – Use simplified model to estimate
 • Closer match will have lower cross-entropy
 \[H(p, m) = \lim_{n \to \infty} -\frac{1}{n} \sum_{w \in L} p(w_1, \ldots, w_n) \log m(w_1, \ldots, w_n) \]
 \[H(p, m) = \lim_{n \to \infty} -\frac{1}{n} \log m(w_1, \ldots, w_n) \]
Entropy of English

- Shannon’s experiment
 - Subjects guess strings of letters, count guesses
 - Entropy of guess seq = Entropy of letter seq
 - 1.3 bits; Restricted text

- Build stochastic model on text & compute
 - Brown computed trigram model on varied corpus
 - Compute (pre-char) entropy of model
 - 1.75 bits
Speech Recognition

• Goal:
 – Given an acoustic signal, identify the sequence of words that produced it
 – Speech understanding goal:
 • Given an acoustic signal, identify the meaning intended by the speaker

• Issues:
 – Ambiguity: many possible pronunciations,
 – Uncertainty: what signal, what word/sense produced this sound sequence
Decomposing Speech Recognition

• Q1: What speech sounds were uttered?
 – Human languages: 40-50 phones
 • Basic sound units: b, m, k, ax, ey, ...(arpabet)
 • Distinctions categorical to speakers
 – Acoustically continuous
 • Part of knowledge of language
 – Build per-language inventory
 – Could we learn these?
Decomposing Speech Recognition

• Q2: What words produced these sounds?
 – Look up sound sequences in dictionary
 – Problem 1: Homophones
 • Two words, same sounds: too, two
 – Problem 2: Segmentation
 • No “space” between words in continuous speech
 • “I scream”/”ice cream”, “Wreck a nice beach”/”Recognize speech”

• Q3: What meaning produced these words?
 – NLP (But that’s not all!)
Signal Processing

• Goal: Convert impulses from microphone into a representation that
 – is compact
 – encodes features relevant for speech recognition

• Compactness: Step 1
 – Sampling rate: how often look at data
 • 8KHz, 16KHz,(44.1KHz= CD quality)
 – Quantization factor: how much precision
 • 8-bit, 16-bit (encoding: u-law, linear…)
(A Little More) Signal Processing

• Compactness & Feature identification
 – Capture mid-length speech phenomena
 • Typically “frames” of 10ms (80 samples)
 – Overlapping
 – Vector of features: e.g. energy at some frequency
 – Vector quantization:
 • n-feature vectors: n-dimension space
 – Divide into m regions (e.g. 256)
 – All vectors in region get same label - e.g. C256
Speech Recognition Model

- **Question:** Given signal, what words?
- **Problem:** uncertainty
 - Capture of sound by microphone, how phones produce sounds, which words make phones, etc
- **Solution:** Probabilistic model
 - \(P(\text{words}|\text{signal}) = \)
 - \(P(\text{signal}|\text{words})P(\text{words})/P(\text{signal}) \)
 - Idea: Maximize \(P(\text{signal}|\text{words})*P(\text{words}) \)
 - \(P(\text{signal}|\text{words}): \) acoustic model; \(P(\text{words}): \) lang model
Probabilistic Reasoning over Time

• Issue: Discrete models
 – Speech is continuously changing
 – How do we make observations? States?

• Solution: Discretize
 – “Time slices”: Make time discrete
 – Observations, States associated with time: Ot, Qt
Modelling Processes over Time

• Issue: New state depends on preceding states
 – Analyzing sequences

• Problem 1: Possibly unbounded # prob tables
 – Observation+State+Time

• Solution 1: Assume stationary process
 – Rules governing process same at all time

• Problem 2: Possibly unbounded # parents
 – Markov assumption: Only consider finite history
 – Common: 1 or 2 Markov: depend on last couple
Language Model

• Idea: some utterances more probable

• Standard solution: “n-gram” model
 – Typically tri-gram: $P(w_i|w_{i-1},w_{i-2})$
 • Collect training data
 – Smooth with bi- & uni-grams to handle sparseness
 – Product over words in utterance
Acoustic Model

- $P(\text{signal}|\text{words})$
 - words \rightarrow phones + phones \rightarrow vector quantiz’n
- Words \rightarrow phones
 - Pronunciation dictionary lookup
 - Multiple pronunciations?
 - Probability distribution
 - Dialect Variation: tomato
 - +Coarticulation
 - Product along path
Acoustic Model

• $P(\text{signal}|\ \text{phones})$:
 – Problem: Phones can be pronounced differently
 • Speaker differences, speaking rate, microphone
 • Phones may not even appear, different contexts
 – Observation sequence is uncertain

• Solution: Hidden Markov Models
 – 1) Hidden \Rightarrow Observations uncertain
 – 2) Probability of word sequences \Rightarrow
 • State transition probabilities
 – 3) 1^{st} order Markov \Rightarrow use 1 prior state
Hidden Markov Models (HMMs)

• An HMM is:
 – 1) A set of states: \(Q = q_o, q_1, ..., q_k \)
 – 2) A set of transition probabilities: \(A = a_{01}, ..., a_{mn} \)
 • Where \(a_{ij} \) is the probability of transition \(q_i \rightarrow q_j \)
 – 3) Observation probabilities: \(B = b_i(o_t) \)
 • The probability of observing \(o_t \) in state \(i \)
 – 4) An initial probability dist over states: \(\pi_i \)
 • The probability of starting in state \(i \)
 – 5) A set of accepting states
Acoustic Model

- 3-state phone model for [m]
 - Use Hidden Markov Model (HMM)

 ![Diagram of transition and observation probabilities]

 - Transition probabilities:
 - Onset: 0.3, 0.7
 - Mid: 0.9, 0.1, 0.2
 - End: 0.4, 0.6
 - Observation probabilities:
 - C1: 0.5, C2: 0.2, C3: 0.3, C4: 0.7, C5: 0.1, C6: 0.4

 - Probability of sequence: sum of prob of paths
Viterbi Algorithm

- Find BEST word sequence given signal
 - Best $P(\text{words}|\text{signal})$
 - Take HMM & VQ sequence
 - \Rightarrow word seq (prob)

- Dynamic programming solution
 - Record most probable path ending at a state i
 - Then most probable path from i to end
 - $O(bMn)$
Viterbi Code

Function Viterbi(observations length T, state-graph) returns best-path
Num-states<-num-of-states(state-graph)
Create path prob matrix viterbi[num-states+2,T+2]
Viterbi[0,0]<- 1.0
For each time step t from 0 to T do
 for each state s from 0 to num-states do
 for each transition s’ from s in state-graph
 new-score<-viterbi[s,t]*at[s,s’]*bs’(ot)
 if ((viterbi[s’,t+1]=0) || (viterbi[s’,t+1]<new-score))
 then
 viterbi[s’,t+1] <- new-score
 back-pointer[s’,t+1]<-s
Backtrace from highest prob state in final column of viterbi[] & return
Enhanced Decoding

• Viterbi problems:
 – Best phone sequence not necessarily most probable word sequence
 • E.g. words with many pronunciations less probable
 – Dynamic programming invariant breaks on trigram

• Solution 1:
 – Multipass decoding:
 • Phone decoding -> n-best lattice -> rescoring (e.g. tri)
Enhanced Decoding: A*

• Search for highest probability path
 – Use forward algorithm to compute acoustic match
 – Perform **fast match** to find next likely words
 • Tree-structured lexicon matching phone sequence
 – Estimate path cost:
 • Current cost + underestimate of total
 – Store in priority queue
 – Search best first
Modeling Sound, Redux

- Discrete VQ codebook values
 - Simple, but inadequate
 - Acoustics highly variable

- Gaussian pdfs over continuous values
 - Assume normally distributed observations
 - Typically sum over multiple shared Gaussians
 - “Gaussian mixture models”
 - Trained with HMM model

\[b_j(o_t) = \frac{1}{\sqrt{(2\pi) |\sum_j|}} e^{\frac{-(o_t-\mu_j)^T(\sum_j^{-1}(o_t-\mu_j))}{2}} \]
Learning HMMs

• Issue: Where do the probabilities come from?
• Solution: Learn from data
 – Trains transition \((a_{ij})\) and emission \((b_j)\) probabilities
 • Typically assume structure
 – Baum-Welch aka forward-backward algorithm
 • Iteratively estimate counts of transitions/emitted
 • Get estimated probabilities by forward comput’n
 – Divide probability mass over contributing paths
Forward Probability

\[\alpha_t(i) = P(o_1, o_2, \ldots, o_t, q_t = j \mid \lambda) \]

\[\alpha_j(1) = a_{1j} b_j(o_t), 1 < j < N \]

\[\alpha_j(t) = \left[\sum_{i=2}^{N-1} \alpha_j(t-1) a_{ij} \right] b_j(o_t) \]

\[P(O \mid \lambda) = \alpha_N(T) = \sum_{i=2}^{N-1} \alpha_i(T) a_{iN} \]
Backward Probability

\[\beta_i(t) = P(o_{t+1}, o_{t+2}, \ldots, o_T \mid q_t = j, \lambda) \]
\[\beta_i(T) = a_{iN} \]
\[\beta_i(t) = \sum_{i=2}^{N-1} a_{ij} b_j(o_{t+1}) \beta_j(t+1) \]

\[P(O \mid \lambda) = \alpha_N(T) = \beta_i(T) = \sum_{j=2}^{N-1} a_{1j} b_j(o_1) \beta_j(1) \]
Re-estimating

• Estimate transitions from i->j

\[\tau_t(i, j) = \frac{\alpha_i(t)a_{ij}b_j(o_t)\beta_j(t+1)}{\alpha_N(T)} \]

\[\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \tau_t(i, j)}{\sum_{t=1}^{T-1}\sum_{j=1}^{N} \tau_t(i, j)} \]

• Estimate observations in j

\[\sigma_j(t) = \frac{P(q_t = j, O | \lambda)}{P(O | \lambda)} = \frac{\alpha_j(t)\beta_j(t)}{P(O | \lambda)} \]

\[\hat{b}_j(v_k) = \frac{\sum_{t=1 \text{ s.t. } o_t = v_k}^{T} \sigma_j(t)}{\sum_{t=1}^{T} \sigma_j(t)} \]
Does it work?

• Yes:
 – 99% on isolate single digits
 – 95% on restricted short utterances (air travel)
 – 80+% professional news broadcast

• No:
 – 55% Conversational English
 – 35% Conversational Mandarin
 – ?? Noisy cocktail parties
Speech Recognition as Modern AI

• Draws on wide range of AI techniques
 – Knowledge representation & manipulation
 • Optimal search: Viterbi decoding
 – Machine Learning
 • Baum-Welch for HMMs
 • Nearest neighbor & k-means clustering for signal id
 – Probabilistic reasoning/Bayes rule
 • Manage uncertainty in signal, phone, word mapping

• Enables real world application