Words:
Computational Morphology and Phonology

CMSC 35100
Natural Language Processing
April 8, 2003
Roadmap

● Words: Surface variation and automata
 – FSTs and Morphological/Phonological Rules
 ● Morphology: Implementing spelling change
 – Fox example
 – Automatic acquisition
 ● Phonology:
 – Brief! Introduction to Phonetics and Phonology
 ● Phone classes
 – Implementing letter to sound rules (FST)
 ● Fox redux
Surface Variation: Morphology

- Searching for documents about
 - “Televised sports”

- Many possible surface forms:
 - Televised, televise, television, ..
 - Sports, sport, sporting

- Convert to some common base form
 - Match all variations
 - Compact representation of language
Surface Variation: Pronunciation

- Regular English plural: +s
- English plural pronunciation:
 - cat+s -> cats where s=s, but
 - dog+s -> dogs where s=z, and
 - base+s -> bases where s=iz
- Phonological rules govern morpheme combination
 - +s -> s, unless [voiced]^s -> z, or [sibilant]^s->iz
- Common lexical representation
 - Mechanism to convert appropriate surface form
Two-level Morphology

- Morphological parsing:
 - Two levels: (Koskenniemi 1983)
 - Lexical level: concatenation of morphemes in word
 - Surface level: spelling of word surface form
 - Build rules mapping between surface and lexical

- Mechanism: Finite-state transducer (FST)
 - Model: two tape automaton
 - Recognize/Generate pairs of strings
FSA -> FST

- Main change: Alphabet
 - Complex alphabet of pairs: input x output symbols
 - e.g. i:o
 - Where i is in input alphabet, o in output alphabet
- Entails change to state transition function
 - Delta(q, i:o): now reads from complex alphabet
- Closed under union, inversion, and composition
 - Inversion allows parser-as-generator
 - Composition allows series operation
Simple FST for Plural Nouns

- **reg-noun-stem**
 - +N:e
 - +SG: #

- **irreg-noun-sg-form**
 - +N:e
 - +PL:^s#

- **irreg-noun-pl-form**
 - +N:e
 - +PL: #
Rules and Spelling Change

- Example: E insertion in plurals
 - After x, z, s...: fox + -s -> foxes

- View as two-step process
 - Lexical -> Intermediate (create morphemes)
 - Intermediate -> Surface (fix spelling)

- Rules: (a la Chomsky & Halle 1968)
 - Epsilon -> e/\{x,z,s\}^__s#
 - Rewrite epsilon (empty) as e when it occurs between x, s, or z at end of one morpheme and next morpheme is -s
E-insertion FST

\[q_0 \xrightarrow{^\Delta:e, \text{other}} q_1 \xrightarrow{\#} q_0 \]
\[q_1 \xrightarrow{\#} q_2 \xrightarrow{\#} q_3 \]
\[q_2 \xrightarrow{z,s,x} q_5 \]
\[q_5 \xrightarrow{z,s,x} q_2 \]
\[q_2 \xrightarrow{s} q_4 \]

\[q_0 \xrightarrow{\#} q_1 \]
\[q_1 \xrightarrow{\#} q_2 \]
\[q_2 \xrightarrow{z,x} q_3 \]
\[q_3 \xrightarrow{s} q_4 \]
Accepting Foxes

Lexical

<table>
<thead>
<tr>
<th>f</th>
<th>o</th>
<th>x</th>
<th>+N</th>
<th>+PL</th>
</tr>
</thead>
</table>

Intermediate

<table>
<thead>
<tr>
<th>f</th>
<th>o</th>
<th>x</th>
<th>^</th>
<th>s</th>
<th>#</th>
</tr>
</thead>
</table>

Surface

<table>
<thead>
<tr>
<th>f</th>
<th>o</th>
<th>x</th>
<th>e</th>
<th>s</th>
</tr>
</thead>
</table>
Implementing Parsing/Generation

- Two-layer cascade of transducers (series)
 - Lexical -> Intermediate; Intermediate -> Surface
 - I->S: all the different spelling rules in parallel
- Bidirectional, but
 - Parsing more complex
 - Ambiguous!
 - E.g. Is fox noun or verb?
Shallow Morphological Analysis

- Motivation: Information Retrieval
 - Just enable matching – without full analysis

- Stemming:
 - Affix removal
 - Often without lexicon
 - Just return stems – not structure
 - Classic example: Porter stemmer
 - Rule-based cascade of repeated suffix removal
 - Pattern-based
 - Produces: non-words, errors, ...
Automatic Acquisition of Morphology

- “Statistical Stemming” (Cabezas, Levow, Oard)
 - Identify high frequency short affix strings for removal
 - Fairly effective for Germanic, Romance languages

- Light Stemming (Arabic)
 - Frequency-based identification of affixes

- Minimum description length approach
 - Minimize cost of model + cost of lexicon | model
Computational Phonology & TTS

- Range of correspondences between sound and text
 - Writing systems from logographic to phonetic
- Question: How are words pronounced via phones?
 - Phones (basic speech units)
 - Crucial for TTS and ASR
 - Challenge: Variability!
 - Phones pronounced differently in different contexts (e.g. [t])
 Phonology models this variation
Phonetics & Transcription

- Word pronunciation model:
 - String of symbols representing phone

- Phone transcription:
 - International Phonetic Alphabet (IPA)
 - Goal: Transcription of all languages
 - Sounds and transcription rules
 - ARPABET: ASCII –based 1- or 2- character system
 - More English-focused, computational
 - NOT identical to alphabet in general
 - E.g. a -> aa or ax ar ae
ARPAbet Snippet

- iy: bee
- ih: hit
- ey: day
- eh: bet
- ae: cat
- aa: father
- ao: dog
- ow: show
- uw: sue....

- p: put
- t: top
- th: thin
- dh: this
- jh: jay
- zh: ambrosia
- dx: butter
- nx: winter
- el: little....
Fast Phonology

Consonants: Closure/Obstruction in vocal tract

- **Place of articulation** (where restriction occurs)
 - Labial: lips (p, b), Labiodental: lips & teeth (f, v)
 - Dental: teeth (th, dh)
 - Alveolar: roof of mouth behind teeth (t, d)
 - Palatal: palate: (y); Palato-alveolar: (sh, jh, zh)…
 - Velar: soft palate (back): k, g; Glottal

- **Manner of articulation** (how restrict)
 - Stop (t): closure + release; plosive (w/ burst of air)
 - Nasal (n): nasal cavity
 - Fricative (s, sh,) turbulence: Affricate: stop+fricative (jh, ch)
 - Approximant (w, l, r)
 - Tap/Flap: quick touch to alveolar ridge
Fast Phonology

- Vowels: Open vocal tract: Articulator position
 - Vowel height: position of highest point of tongue
 - Front (iy) vs Back (uw)
 - High: (ih) vs Low (eh)
 - Diphthong: tongue moves: (ey)
 - Lip shape
 - Rounded: (uw)
Phonological Variation

- Consider t in context:
 - -talk: t – unvoiced, aspirated
 - -stalk: d – often unvoiced
 - -butter: dx – just flap, etc

- Can model with phonological rule
 - Flap rule: \{t,d\} -> [dx]/V'__V
 - T,d becomes flap when between stressed & unstressed vowel
Phonological Rules & FSTs

- Foxes redux:
 - [ix] insertion: $e: [ix] \leftrightarrow [+sibilant]:^z$

Diagram:

```
q0  q1  q2  q3  q4
^:e, other
^:e, other
^:e
^:e, other
^:e, other
^:e, other
^:e
```

States and transitions:

- $q0$: Initial state.
- $q1$: Transition on $+$sib.
- $q2$: Transition on $+$sib.
- $q3$: Transition on $e:ix$.
- $q4$: Final state.

Symbols:

- $+$sib: Sibilant.
- z: Zerovowel.
- e: Vowel.
- $#$: Other.
- S, sh: Special symbols.

Notes:

- The diagram represents a finite state transducer (FST) for the foxes redux rules.
- The arrow directions indicate the transitions and the rules for each state.
- The states $q0$ to $q4$ are connected with transitions based on the rules for insertion and deletion of [ix] and [+sibilant] marks.
Harmony

- Vowel harmony:
 - Vowel changes sound be more similar to other
 - E.g. assimilate to roundness and backness of preceding
 - Yokuts examples:
 - dub+hin -> dubhun
 - xil+hin -> xilhin
 - Bok’+al -> bok’ol
 - Xat+al -> xatal

- Can also be handled by FST
Text-to-Speech

- **Key components:**
 - Pronouncing dictionary
 - Rules
- **Dictionary:** E.g. CELEX, PRONLEX, CMUDict
 - List of pronunciations
 - Different pronunciations, dialects
 - Sometimes: part of speech, lexical stress
 - Problem: Lexical Gaps
 - E.g. Names!
TTS: Resolving Lexical Gaps

- Rules applied to fill lexical gaps
 - Now and then

- Gaps & Productivity:
 - Infinitely many; can’t just list
 - Morphology
 - Numbers
 - Different styles, contexts: e.g. phone number, date,..
 - Names
 - Other language influences
FST-based TTS

- Components:
 - FST for pronunciation of words & morphemes in lex
 - FSA for legal morpheme sequences
 - FSTs for individual pronunciation rules
 - Rules/transducers for e.g. names & acronyms
 - Default rules for unknown words
Modeling Lexicon

- Enrich lexicon:
 - Orthographic + Phonological
 - E.g. cat = c|k a|ae t|t; goose = g|g oo|uw s|s e|e