Words:
Surface Variation and Automata

CMSC 35100
Natural Language Processing
April 3, 2003
Roadmap

- The NLP Pipeline
- Words: Surface variation and automata
 - Motivation:
 - Morphological and pronunciation variation
 - Mechanisms:
 - Patterns: Regular expressions
 - Finite State Automata and Regular Languages
 - Non-determinism, Transduction, and Weighting
 - FSTs and Morphological/Phonological Rules
Real Language Understanding

- Requires more than just pattern matching
- But what?,

- 2001:
 - Dave: Open the pod bay doors, HAL.
 - HAL: I'm sorry, Dave. I'm afraid I can't do that.
Language Processing Pipeline

Speech
- Phonetic/Phonological Analysis
- Morphological analysis
- Syntactic analysis
- Semantic Interpretation
- Discourse Processing

Text
- OCR/Tokenization
- Morphological analysis
Phonetics and Phonology

● Convert an acoustic sequence to word sequence

● Need to know:
 – Phonemes: Sound inventory for a language
 – Vocabulary: Word inventory – pronunciations
 – Pronunciation variation:
 ● Colloquial, fast, slow, accented, context
Morphology & Syntax

- Morphology: Recognize and produce variations in word forms
 - (E.g.) Inflectional morphology:
 - e.g. Singular vs plural; verb person/tense
 - Door + sg: door
 - Door + plural: doors
 - Be + 1st person, sg, present: am

- Syntax: Order and group words together in sentence
 - Open the pod bay doors
 - Vs
 - Pod the open doors bay
Semantics

- Understand word meanings and combine meanings in larger units

- Lexical semantics:
 - Bay: partially enclosed body of water; storage area

- Compositional semantics:
 - “pod bay doors”:
 - Doors allowing access to bay where pods are kept
Discourse & Pragmatics

- Interpret utterances in context
 - Resolve references:
 - “I'm afraid I can't do that”
 - “that” = “open the pod bay doors”
 - Speech act interpretation:
 - “Open the pod bay doors”
 - Command
Surface Variation: Morphology

- Searching for documents about
 - “Televised sports”
- Many possible surface forms:
 - Televised, televise, television, ..
 - Sports, sport, sporting
- Convert to some common base form
 - Match all variations
 - Compact representation of language
Surface Variation: Morphology

- **Inflectional morphology:**
 - Verb: past, present; Noun: singular, plural
 - e.g. Televise: inf; televise +past -> televised
 - Sport+sg: sport; sport+pl: sports

- **Derivational morphology:**
 - v->n: televise -> television

- **Lexicon:** Root form + morphological features

- **Surface:** Apply rules for combination

Identify patterns of transformation, roots, affixes..
Surface Variation: Pronunciation

- Regular English plural: +s
- English plural pronunciation:
 - cat+s → cats where s=s, but
 - dog+s → dogs where s=z, and
 - base+s → bases where s=iz
- Phonological rules govern morpheme combination
 - +s = s, unless [voiced]+s = z, [sibilant]+s = iz
- Common lexical representation
 - Mechanism to convert appropriate surface form
Representing Patterns

- Regular Expressions
 - Strings of 'letters' from an alphabet Sigma
 - Combined by concatenation, union, disjunction, and Kleene *
- Examples: a, aa, aabb, abab, baaa!, baaaaaa!
 - Concatenation: ab
 - Disjunction: a[abcd]: -> aa, ab, ac, ad
 - With precedence: gupp(y|ies) -> guppy, guppies
 - Kleene : (0 or more): baa*! -> ba!, baa!, baaaaa!
Regular expressions specify sets of strings (languages) that can be implemented with a finite-state automaton.
Finite-State Automata

- Formally,
 - Q: a finite set of N states: $q_0, q_1, ..., q_N$
 - Designated start state: q_0; final states: F
 - Sigma: alphabet of symbols
 - Delta(q,i): Transition matrix specifies in state q, on input i, the next state(s)
- Accepts a string if in final state at end of string
 - O.W. Rejects
Finite-State Automata

- Regular Expression: baaa*!
 - e.g. Baaaa!
- Closed under concatenation, union, disjunction, and Kleene *
Non-determinism & Search

- Non-determinism:
 - Same state, same input -> multiple next states
 - E.g.: $\Delta(q_2,a) \rightarrow q_2, q_3$

- To recognize a string, follow state sequence
 - Question: which one?
 - Answer: Either!
 - Provide mechanism to backup to choice point
 - Save on stack: LIFO: Depth-first search
 - Save in queue: FIFO: Breadth-first search

- NFSA equivalent to FSA
 - Requires up to 2^n states, though
From Recognition to Transformation

- FSAs accept or reject strings as elements of a regular language: recognition

- Would like to extend:
 - Parsing: Take input and produce structure for it
 - Generation: Take structure and produce output form
 - E.g. Morphological parsing: words -> morphemes
 - Contrast to stemming
 - E.g. TTS: spelling/representation -> pronunciation
Morphology

- Study of minimal meaning units of language
 - Morphemes
 - Stems: main units; Affixes: additional units
 - E.g. Cats: stem=cat; affix=s (plural)
 - Inflectional vs Derivational:
 - Inflection: add morpheme, same part of speech
 - E.g. Plural -s of noun; -ed: past tense of verb
 - Derivation: add morpheme, change part of speech
 - E.g. verb+ation -> noun; realize -> realization
 - Huge language variation:
 - English: relatively little: concatenative
 - Arabic: richer, templatic kCtCb + -s: kutub
 - Turkish: long affix strings, “agglutinative”
Morphology Issues

● Question 1: Which affixes go with which stems?
 – Tied to POS (e.g. Possessive with noun; tenses: verb)
 – Regular vs irregular cases
 ● Regular: majority, productive – new words inherit
 ● Irregular: small (closed) class – often very common words

● Question 2: How does the spelling change with the affix?
 – E.g. Run + ing -> running; fury+s -> furies
Associating Stems and Affixes

- Lexicon
 - Simple idea: list of words in a language
 - Too simple!
 - Potentially HUGE: e.g. Agglutinative languages
 - Better:
 - List of stems, affixes, and representation of morphotactics
 - Split stems into equivalence classes w.r.t. morphology
 - E.g. Regular nouns (reg-noun) vs irregular-sg-noun...
- FSA could accept legal words of language
 - Inputs: words-classes, affixes
Automaton for English Nouns

- noun-reg
- plural -s
- noun-irreg-sg
- noun-irreg-pl
Two-level Morphology

- Morphological parsing:
 - Two levels: (Koskenniemi 1983)
 - Lexical level: concatenation of morphemes in word
 - Surface level: spelling of word surface form
 - Build rules mapping between surface and lexical

- Mechanism: Finite-state transducer (FST)
 - Model: two tape automaton
 - Recognize/Generate pairs of strings
FSA -> FST

- **Main change: Alphabet**
 - Complex alphabet of pairs: input x output symbols
 - e.g. i:o
 - Where i is in input alphabet, o in output alphabet
- **Entails change to state transition function**
 - Delta(q, i:o): now reads from complex alphabet
- **Closed under union, inversion, and composition**
 - Inversion allows parser-as-generator
 - Composition allows series operation
Simple FST for Plural Nouns

reg-noun-stem

irreg-noun-sg-form

irreg-noun-pl-form
Rules and Spelling Change

- Example: E insertion in plurals
 - After x, z, s...: fox + -s -> foxes

- View as two-step process
 - Lexical -> Intermediate (create morphemes)
 - Intermediate -> Surface (fix spelling)

- Rules: (a la Chomsky & Halle 1968)
 - Epsilon -> e/\{x,z,s\}^__s#
 - Rewrite epsilon (empty) as e when it occurs between x,s,or z at end of one morpheme and next morpheme is -s
E-insertion FST
Implementing Parsing/Generation

- Two-layer cascade of transducers (series)
 - Lexical -> Intermediate; Intermediate -> Surface
 - I->S: all the different spelling rules in parallel
- Bidirectional, but
 - Parsing more complex
 - Ambiguous!
 - E.g. Is fox noun or verb?
Shallow Morphological Analysis

- Motivation: Information Retrieval
 - Just enable matching – without full analysis

- Stemming:
 - Affix removal
 - Often without lexicon
 - Just return stems – not structure
 - Classic example: Porter stemmer
 - Rule-based cascade of repeated suffix removal
 - Pattern-based
 - Produces: non-words, errors, ...
Automatic Acquisition of Morphology

- “Statistical Stemming” (Cabezas, Levow, Oard)
 - Identify high frequency short affix strings for removal
 - Fairly effective for Germanic, Romance languages

- Light Stemming (Arabic)
 - Frequency-based identification of templates & affixes

- Minimum description length approach
 - (Brent and Cartwright 1996, DeMarcken 1996, Goldsmith 2000
 - Minimize cost of model + cost of lexicon | model