Have You Ever ...

- Wondered how products are placed in supermarket isles?
- Had your application for a no-interest-for-6-months Titanium credit card rejected?
- Puzzled over the two-hour phone call to Belize on your phone bill?
- Gazed at the sky and wondered if that bright star is a white dwarf?
- Data mining has the answers!!!

What is Data Mining?

- Finding “interesting” patterns in large amounts of data.
- Data mining encompasses several areas:
 - Machine learning (AI)
 - Statistics
 - Databases

Data Mining Needs Databases

- Machine learning and statistics often make the following assumptions:
 - small amount of data (or sample)
 - data fits in main memory
 - CPU time is crucial
- The reality:
 - huge amounts data
 - data on secondary storage
 - data management (disk I/O) is crucial

Data Mining Techniques

- Classification (supervised learning)
 - Build and train classifiers (decision trees, neural nets, etc.)
- Clustering (unsupervised learning)
 - Partition the data into groups with similar characteristics.
- Sequence and stream analysis
- Association rule-mining

Association-Rule Mining

- Flagship of data mining with database flavor.
- Find correlations among data without building a complete predictive or descriptive model.
- Data-centric approach.
Market Basket Data

- Consider supermarket customers.
- At the checkout each customer has a basket of items.
- Find correlation among the contents of baskets.
- The model works for many domains:
 - Online/offline shopping
 - Web surfing
 - Text analysis.

Association Rules

- Find rules of the form:
 - People who buy X tend to buy Y.

Mythical Association Rule

A Lesson in Marketing

- Suppose we know that people buy bread and milk frequently. So what?
 - Stock them together.
 - Stock them apart.
 - Run sales on one and up the price of the other.
- Amazon’s recommendations are based on association rules.
 - Order size went up 20% in the first week after recommendations were introduced.

Schema of Market Basket Data

- Several models possible depending on the application.
- Simplest, most general schema: `Baskets(basketID, item)`
- Applicable to many different scenarios, online and offline.

Market Basket Example

<table>
<thead>
<tr>
<th>basketID</th>
<th>item</th>
</tr>
</thead>
<tbody>
<tr>
<td>11111</td>
<td>beer</td>
</tr>
<tr>
<td>11111</td>
<td>chips</td>
</tr>
<tr>
<td>11111</td>
<td>salsa</td>
</tr>
<tr>
<td>22222</td>
<td>vodka</td>
</tr>
<tr>
<td>22222</td>
<td>caviar</td>
</tr>
</tbody>
</table>
Support and Confidence

- Formally, we associate two numbers with every rule:
 - support
 - confidence
- Example: Beer → Diapers
 - Support is the fraction of all baskets that contain both beer and diapers.
 - Confidence is the fraction of baskets which contain beer that also contain diapers.

Thresholds

- Find association rules with high support and high confidence.
- Typically, high support means > 0.1% and high confidence means > 50%.
- Thresholds depend on the application.

Main Challenge

- Too many item combinations:
 - 100s of thousands of items
 - millions of transactions
- Direct approach too slow:
 - 100 million baskets, 20 items/basket
 - 19 billion pairs, 100+ billion triples,...

Two-Phase Approach

- Phase 1: Find all itemsets with high support.
 - These itemsets are called frequent.
- Phase 2: Construct rules with high confidence.
 - The computational cost of phase 1 dominates the total cost.
 - Focus on finding frequent itemsets.

Find All Frequent Pairs

- Write query in SQL:

The \textit{A-Priori} Technique

- Key observation: a pair of items is frequent only if each item is frequent.
 - If \{bread, cheese\} is frequent then \{bread\} and \{cheese\} must be frequent.
- Levelwise pruning:
 - Consider \{bread, milk, cheese\} only if \{bread, milk\}, \{bread, cheese\}, \{milk, cheese\} are frequent
A-Priori in SQL

```sql
INSERT INTO Baskets1(bid, item)
SELECT * FROM Baskets
WHERE item IN (SELECT item
FROM Baskets
GROUP BY item
HAVING COUNT(*) >= s);
```

- Rewrite join using Basket1 instead of Basket.

Extending Association Rules

- Causality vs. association
 - much trickier
 - hidden variables outside the domain
- More detailed associations:
 - Find items that are bought together frequently, in a particular region, in a particular month.
 - Additional information is already available at the data warehouse.

Example Data Warehouse

![Data Warehouse Diagram]

Need for Data Warehousing

- Integrated, company-wide view of high-quality information.
- Separation of operational and analytical systems and data.

Operational vs. Analytical Data

<table>
<thead>
<tr>
<th>Data Differences</th>
<th>Technical Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Time-Horizon: Days/Months</td>
<td>Typical Time-Horizon: Years</td>
</tr>
<tr>
<td>Detailed</td>
<td>Summarized (and/or Detailed)</td>
</tr>
<tr>
<td>Current</td>
<td>Values over time (Snapshots)</td>
</tr>
<tr>
<td>Can be Updated</td>
<td>Read (and Append) Only</td>
</tr>
<tr>
<td>Control of Update: Major Issue</td>
<td>Control of Update: No Issue</td>
</tr>
<tr>
<td>Small Amounts used in a Process</td>
<td>Large Amounts used in a Process</td>
</tr>
<tr>
<td>Non-Redundant</td>
<td>Redundancy not an Issue</td>
</tr>
<tr>
<td>High frequency of Access</td>
<td>Low/Most frequency of Access</td>
</tr>
<tr>
<td>Purpose Differences</td>
<td></td>
</tr>
<tr>
<td>For "Clerical Community"</td>
<td>For "Managerial Community"</td>
</tr>
<tr>
<td>Supports Day-to-Day Operations</td>
<td>Supports Manageral Needs</td>
</tr>
<tr>
<td>Application Oriented</td>
<td>Subject Oriented</td>
</tr>
</tbody>
</table>

Application vs. Subject Oriented

<table>
<thead>
<tr>
<th>Application: Health Club Members-Visit Database</th>
<th>Subject: Health Club Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEALTHCLUBMEMBERS</td>
<td></td>
</tr>
<tr>
<td>MembId Name MembLevel</td>
<td>DatePayed</td>
</tr>
<tr>
<td>111 Joe A 01/01/2000</td>
<td></td>
</tr>
<tr>
<td>222 Sue B 01/01/2000</td>
<td></td>
</tr>
<tr>
<td>333 Pat A 01/01/2000</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

DAILYVISITORSFROMNONMEMBERS

<table>
<thead>
<tr>
<th>Trid</th>
<th>VisitType</th>
<th>VisitDate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11xx22</td>
<td>YP</td>
<td>01/01/2000</td>
<td></td>
</tr>
<tr>
<td>11xx23</td>
<td>NP</td>
<td>02/01/2000</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MEMBERSHIPLEVELS

<table>
<thead>
<tr>
<th>ID</th>
<th>Type</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Gold $100</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Basic $60</td>
<td></td>
</tr>
</tbody>
</table>

VISITLEVELS

<table>
<thead>
<tr>
<th>ID</th>
<th>Type</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF</td>
<td>With Pool Usage $15</td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>Without Pool Usage $10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Application: Health Club Members-Fact Database</th>
<th>Subject: Health Club Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEALTHCLUBMEMBERS</td>
<td></td>
</tr>
<tr>
<td>Rid Date Name MembLevel</td>
<td>Amount</td>
</tr>
<tr>
<td>7235 01/01/2000 NonMember $15</td>
<td></td>
</tr>
<tr>
<td>7236 01/01/2000 Member $100</td>
<td></td>
</tr>
<tr>
<td>7237 01/01/2000 Member $50</td>
<td></td>
</tr>
<tr>
<td>7238 02/01/2000 Member $100</td>
<td></td>
</tr>
<tr>
<td>7239 02/01/2000 Member $10</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Application vs. Subject Oriented

Application:
- Health Club Members-Visit Database

Subject:
- Health Club Revenue

HEALTHCLUBMEMBERS

<table>
<thead>
<tr>
<th>MembId</th>
<th>Name</th>
<th>MembLevel</th>
<th>DatePaid</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Joe</td>
<td>A</td>
<td>01/01/2000</td>
</tr>
<tr>
<td>222</td>
<td>Sue</td>
<td>B</td>
<td>01/01/2000</td>
</tr>
<tr>
<td>333</td>
<td>Pat</td>
<td>A</td>
<td>01/01/2000</td>
</tr>
</tbody>
</table>

DAILYVISITSFROMNONMEMBERS

<table>
<thead>
<tr>
<th>Trid</th>
<th>VisitType</th>
<th>VisitDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>11xx22</td>
<td>YP</td>
<td>01/01/2000</td>
</tr>
<tr>
<td>11xx23</td>
<td>NP</td>
<td>02/01/2000</td>
</tr>
<tr>
<td>11xx24</td>
<td>YP</td>
<td>02/01/2000</td>
</tr>
</tbody>
</table>

MEMBERSHIPLEVELS

<table>
<thead>
<tr>
<th>ID</th>
<th>Type</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Gold</td>
<td>$100</td>
</tr>
<tr>
<td>B</td>
<td>Basic</td>
<td>$50</td>
</tr>
</tbody>
</table>

VISITLEVELS

<table>
<thead>
<tr>
<th>ID</th>
<th>Type</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP</td>
<td>With Pool Usage</td>
<td>$15</td>
</tr>
<tr>
<td>NP</td>
<td>Without Pool Usage</td>
<td>$10</td>
</tr>
</tbody>
</table>

REVENUE

<table>
<thead>
<tr>
<th>Rid</th>
<th>DateGenerated</th>
<th>CustomerType</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>7235</td>
<td>01/01/2000</td>
<td>NonMember</td>
<td>$15</td>
</tr>
<tr>
<td>7236</td>
<td>01/01/2000</td>
<td>Member</td>
<td>$100</td>
</tr>
<tr>
<td>7237</td>
<td>01/01/2000</td>
<td>Member</td>
<td>$50</td>
</tr>
<tr>
<td>7238</td>
<td>01/01/2000</td>
<td>Member</td>
<td>$100</td>
</tr>
<tr>
<td>7239</td>
<td>02/01/2000</td>
<td>NonMember</td>
<td>$10</td>
</tr>
<tr>
<td>7240</td>
<td>02/01/2000</td>
<td>NonMember</td>
<td>$15</td>
</tr>
</tbody>
</table>

Standard ARM Question:

What products are frequently bought together?

- **Location**
 - LocationKey (PK)
 - StoreID
 - Region
 - City

- **Customer**
 - CustomerKey (PK)
 - CustomerID
 - Gender
 - Zip

- **Product**
 - ProductKey (PK)
 - SKU
 - Brand

- **Calendar**
 - CalendarKey (PK)
 - FullDate
 - Month

- **Sales fact table**
 - CalendarKey (FK)
 - ProductKey (FK)
 - CustomerKey (FK)
 - LocationKey (FK)
 - TransactionID

Analyst may want to know:

What products are frequently bought together in a particular region and in a particular month?

- **Location**
 - LocationKey (PK)
 - StoreID
 - Region
 - City

- **Customer**
 - CustomerKey (PK)
 - CustomerID
 - Gender
 - Zip

- **Product**
 - ProductKey (PK)
 - SKU
 - Brand

- **Calendar**
 - CalendarKey (PK)
 - FullDate
 - Month

- **Sales fact table**
 - CalendarKey (FK)
 - ProductKey (FK)
 - CustomerKey (FK)
 - LocationKey (FK)
 - TransactionID

New Challenges

- Interactive mining
- Collaborative/distributed mining
- Peer to peer systems
- Beyond relational data:
 - Text
 - XML
 - Audio
 - Video