Logical Query Languages
Motivation:
1. Logical rules extend more naturally to recursive queries than does relational algebra.
 - Used in SQL3 recursion.
2. Logical rules form the basis for many information-integration systems and applications.

Datalog Example
Likes(drinker, beer)
Sells(bar, beer, price)
Frequents(drinker, bar)

Happy(d) ← Frequents(d,bar) AND Likes(d,beer) AND Sells(bar,beer,p)

Notation
- The expression is a rule
- Left side = head.
- Right side = body = AND of subgoals.
- Head and subgoals are atoms.
- Atom = predicate and arguments.

More Notation
- Predicate = relation name or arithmetic predicate, e.g. <.
- Arguments are variables or constants.
- Subgoals (not head) may optionally be negated by NOT.
Meaning of Rules

- Head is true of its arguments if there exist values for local variables (those in body, not in head) that make all of the subgoals true.
- If no negation or arithmetic comparisons, just natural join the subgoals and project onto the head variables.

Example

- Previous rule equivalent to:
 \[\text{Happy}(d) = \pi_{\text{drinker}}(\text{Frequents} \bowtie \text{Likes} \bowtie \text{Sells}) \]

Evaluation of Rules

Two, dual, approaches:
1. Variable-based: Consider all possible assignments of values to variables. If all subgoals are true, add the head to the result relation.
2. Tuple-based: Consider all assignments of tuples to subgoals that make each subgoal true. If the variables are assigned consistent values, add the head to the result.

Example: Variable-Based Assignment

\[S(x,y) \leftarrow R(x,z) \text{ AND } R(z,y) \text{ AND NOT } R(x,y) \]

- Only two tuples: (1,2) and (2,3)
- Only two assignments make the first subgoal true:
 1. \(x = 1, z = 2 \)
 2. \(x = 2, z = 3 \)

Example: Tuple-Based Assignment

- Trick: start with the positive (not negated), relational (not arithmetic) subgoals only.

\[S(x,y) \leftarrow R(x,z) \text{ AND } R(z,y) \text{ AND NOT } R(x,y) \]

- R has two tuples: (1,2) and (2,3)

Example (continued)

- In case (1), \(y = 3 \) makes second subgoal true.
- Since \((1,3)\) is not in \(R \), the third subgoal is also true.
- So, add \((x,y) = (1,3)\) to relation \(S \).
- In case (2), no value of \(y \) makes the second subgoal true.
- Thus, \(S = \{(1,3)\} \)
Example (continued)

- Four assignments of tuples to subgoals
 - \(R(x, z) \) \(R(z, y) \)
 - (1,2) \(\rightarrow \) (1,2)
 - (1,2) \(\rightarrow \) (2,3)
 - (2,3) \(\rightarrow \) (1,2)
 - (2,3) \(\rightarrow \) (2,3)
- Only the second gives a consistent value to \(z \).
- That assignment also makes \(\neg R(x, y) \) true.
- Thus, (1,3) is the only tuple for the head.

Safety

- A rule can make no sense if variables appear in funny ways.
 - Examples:
 - \(S(x) \leftarrow R(y) \)
 - \(S(x) \leftarrow \neg R(x) \)
 - \(S(x) \leftarrow R(y) \land x < y \)
 - In each of these cases, the result is infinite, even if the relation \(R \) is finite.

Safety Definition

- To make sense as a database operation, we need to require three things of a variable \(x \) (= definition of safety). If \(x \) appears in either
 1. The head,
 2. A negated subgoal, or
 3. An arithmetic comparison, then \(x \) must also appear in a nonnegated, ordinary (relational) subgoal of the body.
- We insist that rules be safe, henceforth.

Datalog Programs

- A collection of rules is a Datalog program.
 - Predicates/relations divide into two classes:
 - EDB = extensional database = relation stored in DB.
 - IDB = intensional database = relation defined by one or more rules.
 - A predicate must be IDB or EDB, not both.
 - Thus, an IDB predicate can appear in the body or head of a rule; EDB only in the body.

Example

- Convert the following SQL statement (Find the manufacturers of the beers that Spoon sells):
  ```sql
  SELECT  manf
  FROM  Beers
  WHERE  name  IN (
    SELECT  beer
    FROM  Sells
    WHERE  bar  =  'Spoon';
  )
  to a Datalog program.
  ```

Example (continued)

- SpoonMenu(b) \(\leftarrow \) Sells(‘Spoon’, b, p)
- Answer(m) \(\leftarrow \) SpoonMenu(b) AND Beers(b, m)
- Note: Beers, Sells = EDB; SpoonMenu, Answer = IDB.
Expressive Power of Datalog

- Nonrecursive Datalog = relational algebra.
- Datalog simulates SQL select-from-where without aggregation and grouping.
- Recursive Datalog expresses queries that cannot be expressed in SQL.
- But none of these languages have full expressive power (Turing completeness).

Relational Algebra to Datalog

- Text has constructions for each of the operators of relational algebra.
- Only hard part: selections with OR's and NOT's.
- Simulate a relational algebra expression in Datalog by creating an IDB predicate for each interior node and using the construction for the operator at that node.

Example

- Find the bar that sells two beers at the same price:

Example (continued)

```
R1(bar, beer1, beer, price) ← Sells(bar, beer1, price) AND Sells(bar, beer, price);
R2(bar, beer1, beer, price) ← R1(bar, beer1, beer, price) AND beer1 >= beer;
Answer(bar) ← R2(bar, beer1, beer, price);
```

Datalog to Relational Algebra

- General rule is complex; the following often works for single rules:
 1. Use \(\rho \) to create for each relational subgoal a relation whose schema is the variables of that subgoal.
 2. Handle negated subgoals by finding an expression for the finite set of all possible values for each of its variables (\(\pi \) a suitable column) and take their product. Then subtract.

More Datalog to Relational Algebra

3. Natural join the relations from (1), (2).
4. Get the effect of arithmetic comparisons with \(\sigma \).
5. Project onto head with \(\pi \).

- Several rules for same predicate: use \(\cup \).
More Datalog to Relational Algebra

- Problems not handled: constant arguments and variables appearing twice in the same atom.
- Can you provide the necessary fixes?

Example

\[
S(x,y) \leftarrow R(x,z) \text{ AND } R(z,y) \text{ AND NOT } R(x,y)
\]

\[
S_1(x,y,z) :=
\]

\[
S_2(x,y) :=
\]

\[
S_3(x,y) :=
\]

\[
S(x,y) :=
\]

Recursion

- IDB predicate P depends on predicate Q if there is a rule with P in the head and Q in a subgoal.
- Draw a graph: nodes = IDB predicates, arc from P to Q means P depends on Q.
- If there is a cycle then the program is recursive.

Recursive Example

\[
Sib(x,y) \leftarrow Par(x,p) \text{ AND } Par(y,p) \\text{ AND } x \neq y
\]

\[
\text{Cousin}(x,y) \leftarrow Sib(x,y)
\]

\[
\text{Cousin}(x,y) \leftarrow Par(x,xp) \text{ AND } Par(y,yp) \\text{ AND } \text{Cousin}(xp,yp)
\]

Evaluating Recursive Rules

- Iterative fixed-point evaluation:

```
Start
IDB = ∅

Apply rules to IDB, EDB

Changes to IDB?
Yes
No
Done
```

Example

- EDB Par =

```
h a d
f b e
j k
```


Iterations

<table>
<thead>
<tr>
<th>Sib</th>
<th>Cousin</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊙</td>
<td>⊙</td>
</tr>
</tbody>
</table>

Initial:

Round 1 add: (b,c), (c,e)
(b,h), (j,k)

Round 2 add: (b,c), (c,e)
(g,h), (j,k)

Round 3 add: (f,g), (f,h), (g,i)
(h,i), (i,k)

Round 4 add: (k,k), (i,j)

Negation and Recursion

- Negation wrapped inside a recursion makes no sense.
- Even when negation and recursion are separated, there can be ambiguity about what the rules mean, and one meaning must be selected.

Stratified Negation

- Stratified negation is an additional restraint on recursive rules (like safety) that solves both problems:
 1. It rules out negation wrapped in recursion.
 2. When negation is separate from recursion, it yields the intuitively correct meaning of rules (the stratified model).

Problem with Recursive Negation

- Consider:
 \[P(x) \leftarrow Q(x) \text{ AND NOT } P(x) \]
- \(Q = \text{EDB} = \{1,2\} \).
- Compute IDB \(P \) iteratively?
 - Initially, \(P = \emptyset \)
 - Round 1: \(P = \{1,2\} \)
 - Round 2: \(P = \emptyset \), etc., etc.

Strata

- Intuitively: stratum of an IDB predicate maximum number of negations you can pass through on the way to an EDB predicate.
- Must not be infinity in stratified rules.
- Define stratum graph:
 - Nodes = IDB predicates.
 - Arc \(P \rightarrow Q \) if \(Q \) appears in the body of a rule with head \(P \).
 - Label that arc - if \(Q \) is in a negated subgoal.

Example

\[P(x) \leftarrow Q(x) \text{ AND NOT } P(x) \]
Another Example

- Given $\text{Source}(\text{node})$, $\text{Target}(\text{node})$, $\text{Arc}(\text{node1, node2})$.
- Which target nodes cannot be reached from any source node?

 \[
 \text{Reach}(x) \leftarrow \text{Source}(x) \\
 \text{Reach}(x) \leftarrow \text{Reach}(y) \text{ AND Arc}(y,x) \\
 \text{NoReach}(x) \leftarrow \text{Target}(x) \text{ AND NOT Reach}(x)
 \]

Computing Strata

- Stratum of an IDB predicate $A = \text{maximum number of negative arcs on any path from } A \text{ in the stratum graph}$.

- Examples:
 - For first example, stratum of P is ∞.
 - For second example, stratum of Reach is 0; stratum of NoReach is 1.

Stratified Negation

- A Datalog program with recursion and negation is stratified if every IDB predicate has a finite stratum.
- If a Datalog program is stratified, we can compute the relations for the IDB predicates lowest-stratum-first.
 - This is the stratified model.

Example

\[
\text{Reach}(x) \leftarrow \text{Source}(x) \\
\text{Reach}(x) \leftarrow \text{Reach}(y) \text{ AND Arc}(y,x) \\
\text{NoReach}(x) \leftarrow \text{Target}(x) \text{ AND NOT Reach}(x)
\]

- EDB:
 - $\text{Source} = \{1\}$.
 - $\text{Arc} = \{(1,2), (3,4), (4,3)\}$.
 - $\text{Target} = \{2,3\}$.

Example (continued)

- First compute $\text{Reach} = \{1,2\}$ (stratum 0).
- Next compute $\text{NoReach} = \{3\}$.
- Is the stratified solution obvious?
- There is another model that makes the rules true no matter what values we substitute for the variables.
 - $\text{Reach} = \{1,2,3,4\}$.
 - $\text{NoReach} = \emptyset$.

Example (continued)

- Remember: the only way to make a Datalog rule false is to find values for the variables that make the body true and the head false.
- For this model, the heads of the rules for Reach are true for all values, and in the rule for NoReach the subgoal NOT $\text{Reach}(x)$ assures that the body cannot be true.