Lesson 9: Recursive Types

Lesson 9
Recursive Types

2/19, 21
Chapters 20, 21

Recursive type

* Recursive type terms are infinite, but regular

« For finite terms, use induction based on least
fixed points

+ For infinite terms/trees, we have to use
coinduction, based on greatest fixed points.

* For least fixed points, recursively explore all
subterms

* For greatest fixed points, recursively explore the
support set (and hope that it is finite)

Lesson 9: Recursive Types 2

Lesson 9: Recursive Types

Greatest fixed point algorithm

How to check for membership in the gfp (of an invertible
generating function F)?

gfp(X) = if support(X)? then false
else if support(X) C X then true
else gfp(support(X) U X)

Correctness:

Thm: 1. If gfp(X) = true then X C vF
2. If gfp(X) = false then X ¢ vF

Proof: induction on recursive computation of gfp(X)

Lesson 9: Recursive Types 3

Gfp algorithm: termination

pred(x) = O if support(x)?
= support(X) if support(X)|
pred(X) = U, cy pred(x)

reachable(X) = U, pred"(x)

reachable(x) = reachable({x})
F is finite state if reachable(x) is finite for each x

Thm: If reachable(X) is finite, then gfp(X) is defined.
If Fis finite state, gfp(X) terminates for any finite X.

Lesson 9: Recursive Types 4

Lesson 9: Recursive Types

More efficient gfp: gfp®

Avoid repeated addition of elements by keeping track of all
elements examined before in a new argument A.

gfp°(A.X) = if support(X)? then false
else if X = @ then true
else gfpa(AUX, support(X)\(AUX))

This version considers only new elements added by support
function.

x € vF iff gfpy(D,{x})

Lesson 9: Recursive Types

More efficient gfp: gfp?

Threaded version of gfp, adding one element at a time and
producing visited set as the result (assume support(x) finite):

gfp'(Ax) = if xE A then A
else if support({x})1 then fail
else fold gfp* (AU{x}) (support(x))

where fold is a function like list fold but operating on sets:

foldf X @ =X
fold f X {y1, Ya, Ya} = fold f (f(X.y1)) {y2, ... Y0}

Correctness: x € vF iff gfp'(d.x)|

Lesson 9: Recursive Types

Lesson 9: Recursive Types

Regular Trees

|
Def: S € T'is a subtree of T€ Tif S = Ao. T(n,0) for some
path =t € dom(T). subtrees(T) is the set of subtrees of T.

Def: T € T is regular if subtrees(T) is finite. T, is the set
of regular trees.

Lesson 9: Recursive Types

Subtype relation

The subtyping relation on T is defined as the greatest
fixed point of the relation generator function

S(R) = {(T, Top) | TE T}
U {(S1 x 52, T1 x T2) | (S1,T1), (52,T2) R}
U {(S1 — S2, T1 — T2) | (T1,51), (52,T2) € R}

S, is the restriction of S to T, (regular trees).

Prop: S.is finite state.

Lesson 9: Recursive Types

Lesson 9: Recursive Types

u-Types

Def: T, .. the set of raw u-types, is defined by the grammar:
Tuz X | Top | TxT | T—T | uXT
This contains useless terms like uX.X that we should exclude.

Def: Te r1-)m—r'c(w
form uX.uX;. .. uX,. S, Sisnot X. (L.e. there is always an
occurrence of x or — between a binder uX and an applied

occurrence of X. T, denotes the set of contractive u-types.

is confractive if for any subtree of Tof the

Can define a function treeof : T,,— T mapping u-types to
tree types.

Lesson 9: Recursive Types 9

Subtype relation for u-Types

The generating function S,, for the subtyping relation on T,
is given by

Sa(R) = {(S, Top) | S € T,}}
U {(S1x Sz, Ty x T5) | (S1.Ty), (S2.T2) ER}
U (81— S, Ti— To) | (T1.SY). (S..T.) ER}
U {(S, uX.T)| (S, [X -> uX.T]T) €R}
U {(uX.S, T) | (IX->uX.5]S, T)ER, T = Top,
T=uY. T}

Lesson 9: Recursive Types 10

Lesson 9: Recursive Types

Subtype relation for u-Types

Sn is invertible with support function

support(S,T)
=@ if T=Top
{(51,T), (S, TL)} ifS=5,xS,and T=T; x T,
= {(T,Sy), (S, TL)} ifS=5,—-S,and T=T; = T,
= {(S, [X > uX.TIT)}if T=uX.T,
{(IX > uX.5,15;, T} if S=uX.S;, T=Top, T = uY.T,
f

Thm: (S.T)EVS,, iff treeof(S,T)EVS

Lesson 9: Recursive Types 11

Subtyping algorithm

Specialize gfp'to S,

subtype (5,T)
= if (5,T)E A then A
else let Ap = AU{(S,T)} in
if T=Top then A,
elseif S=5;xS,and T=T; x T, then
let A; = subtype(A,,S;,T;) in subtype(A,,S,,T,)
elseif S=5,—S,and T=T, — T, then
let A, = subtype(A,,T,,5;) in subtype(A,,S,,T,)
else if T = uX.T; then subtype(Ay,S,[X -> uX.T]T;)
else if S = uX.S; then subtype(Ay,[X -> uX.5;15;)
else fail

Lesson 9: Recursive Types 12

Lesson 9: Recursive Types

Subtyping Iso-recursive types

The Amber rule:

I XY |-S«T

S |-uX.S<uy.T

XaYez

T-X<«Y

(5-Amber)

(5-Assumption)

Lesson 9: Recursive Types 13

