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Recursive type

• Recursive type terms are infinite, but regular
• For finite terms, use induction based on least

fixed points
• For infinite terms/trees, we have to use

coinduction, based on greatest fixed points.
• For least fixed points, recursively explore all

subterms
• For greatest fixed points, recursively explore the

support set (and hope that it is finite)
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Greatest fixed point algorithm

How to check for membership in the gfp (of an invertible
generating function F)?

gfp(X) = if support(X)↑ then false
              else if support(X) Õ X then true
              else gfp(support(X) » X)

Correctness:

Thm: 1. If gfp(X) = true then X Õ nF
        2. If gfp(X) = false then X À nF

Proof: induction on recursive computation of gfp(X)
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Gfp algorithm: termination

         pred(x) =  ∅ if support(x)↑
       =  support(X) if support(X)Ø

      pred(X) =  »x Œ X pred(x)

         reachable(X)  =  »n≥0 predn(x)

         reachable(x)  =  reachable({x})

F is finite state if reachable(x) is finite for each x

Thm: If reachable(X) is finite, then gfp(X) is defined.
If F is finite state, gfp(X) terminates for any finite X.
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More efficient gfp: gfpa

Avoid repeated addition of elements by keeping track of all
elements examined before in a new argument A.

gfpa(A,X) =  if support(X)↑ then false
                    else if X = ∅ then true
                    else gfpa(A»X, support(X)\(A»X))

This version considers only new elements added by support
function.

x Œ nF  iff  gfpa(∅,{x})
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More efficient gfp: gfpt

Threaded version of gfp, adding one element at a time and
producing visited set as the result (assume support(x) finite):

gfpt(A,x) =  if x Œ A then A
                    else if support({x})↑ then fail
                    else fold gfpt (A»{x}) (support(x))

where fold is a function like list fold but operating on sets:

fold f X ∅ = X
fold f X {y1, y2, ..., yn} = fold f (f(X,y1)) {y2, ..., yn}

Correctness:  x Œ nF  iff  gfpt(∅,x)Ø
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Regular Trees

Def: S Œ T is a subtree of T Œ T if S = ls. T(p,s) for some
path p Œ dom(T).  subtrees(T) is the set of subtrees of T.

Def: T Œ T  is regular if subtrees(T) is finite.  Tr  is the set
of regular trees.
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Subtype relation

The subtyping relation on T is defined as the greatest
fixed point of the relation generator function 

S(R)  =  {(T, Top) | T Œ T} 
  »  {(S1 ¥ S2, T1 ¥ T2) | (S1,T1), (S2,T2) Œ R}
  »  {(S1 Æ S2, T1 Æ T2) | (T1,S1), (S2,T2) Œ R}

      Sr is the restriction of S to Tr  (regular trees).

      Prop:  Sr is finite state.
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m-Types

Def: Tm-raw, the set of raw m-types, is defined by the grammar:

T  ::=  X  |  Top  |  T ¥ T  |  T Æ T  |  mX.T

This contains useless terms like mX.X that we should exclude.

Def: T Œ Tm-raw  is contractive if for any subtree of Tof the
form  mX.mX1. ... mXn. S,  S is not X.  (I.e. there is always an
occurrence of ¥ or Æ between a binder mX and an applied
occurrence of X.   Tm denotes the set of contractive  m-types.

Can define a function treeof : Tm Æ T  mapping m-types to
tree types.
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Subtype relation for m-Types

The generating function Sm for the subtyping relation on Tm

is given by

Sm(R)  =  {(S, Top) | S Œ Tm}
           »  {(S1 ¥ S2, T1 ¥ T2) | (S1,T1), (S2,T2) Œ R}
           »  {(S1 Æ S2, T1 Æ T2) | (T1,S1), (S2,T2) Œ R}
           »  {(S,  mX.T) | (S, [X -> mX.T]T) Œ R}
           »  {(mX.S, T) | ([X -> mX.S]S, T) Œ R, T ≠ Top,
                                   T ≠ mY.T1}
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Subtype relation for m-Types

Sm is invertible with support function

support(S,T)
=  ∅  if T = Top
=  {(S1,T1), (S2,T2)}  if S = S1 ¥ S2 and T = T1 ¥ T2

=  {(T1,S1), (S2,T2)}  if S = S1 Æ S2 and T = T1 Æ T2

=  {(S, [X -> mX.T1]T1)} if T = mX.T1

=  {([X -> mX.S1]S1, T)} if S = mX.S1, T ≠ Top, T ≠ mY.T1

=  ↑

Thm: (S,T) Œ nSm  iff  treeof(S,T) Œ nS
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Subtyping algorithm

Specialize gfpt to Sm.

subtype (S,T)
=  if (S,T) Œ A then A
   else let A0 = A»{(S,T)} in
     if T = Top then A0

       else if S = S1 ¥ S2 and T = T1 ¥ T2 then
let A1 = subtype(A0,S1,T1) in subtype(A1,S2,T2)

       else if S = S1 Æ S2 and T = T1 Æ T2 then
let A1 = subtype(A0,T1,S1) in subtype(A1,S2,T2)

       else if T = mX.T1  then subtype(A0,S,[X -> mX.T1]T1)
       else if S = mX.S1  then subtype(A0,[X -> mX.S1]S1)
     else fail
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Subtyping Iso-recursive types

The Amber rule:

S, X <: Y |- S <: T

S |- mX.S <: mY.T
(S-Amber)

X <: Y Œ S

S |- X <: Y
(S-Assumption)


