
Lesson 9: Recursive Types

1

Lesson 9
Recursive Types

2/19, 21
Chapters 20, 21

Lesson 9: Recursive Types 2

Recursive type

• Recursive type terms are infinite, but regular
• For finite terms, use induction based on least

fixed points
• For infinite terms/trees, we have to use

coinduction, based on greatest fixed points.
• For least fixed points, recursively explore all

subterms
• For greatest fixed points, recursively explore the

support set (and hope that it is finite)

Lesson 9: Recursive Types

2

Lesson 9: Recursive Types 3

Greatest fixed point algorithm

How to check for membership in the gfp (of an invertible
generating function F)?

gfp(X) = if support(X)↑ then false
 else if support(X) Õ X then true
 else gfp(support(X) » X)

Correctness:

Thm: 1. If gfp(X) = true then X Õ nF
 2. If gfp(X) = false then X À nF

Proof: induction on recursive computation of gfp(X)

Lesson 9: Recursive Types 4

Gfp algorithm: termination

 pred(x) = ∅ if support(x)↑
 = support(X) if support(X)Ø

 pred(X) = »x Œ X pred(x)

 reachable(X) = »n≥0 predn(x)

 reachable(x) = reachable({x})

F is finite state if reachable(x) is finite for each x

Thm: If reachable(X) is finite, then gfp(X) is defined.
If F is finite state, gfp(X) terminates for any finite X.

Lesson 9: Recursive Types

3

Lesson 9: Recursive Types 5

More efficient gfp: gfpa

Avoid repeated addition of elements by keeping track of all
elements examined before in a new argument A.

gfpa(A,X) = if support(X)↑ then false
 else if X = ∅ then true
 else gfpa(A»X, support(X)\(A»X))

This version considers only new elements added by support
function.

x Œ nF iff gfpa(∅,{x})

Lesson 9: Recursive Types 6

More efficient gfp: gfpt

Threaded version of gfp, adding one element at a time and
producing visited set as the result (assume support(x) finite):

gfpt(A,x) = if x Œ A then A
 else if support({x})↑ then fail
 else fold gfpt (A»{x}) (support(x))

where fold is a function like list fold but operating on sets:

fold f X ∅ = X
fold f X {y1, y2, ..., yn} = fold f (f(X,y1)) {y2, ..., yn}

Correctness: x Œ nF iff gfpt(∅,x)Ø

Lesson 9: Recursive Types

4

Lesson 9: Recursive Types 7

Regular Trees

Def: S Œ T is a subtree of T Œ T if S = ls. T(p,s) for some
path p Œ dom(T). subtrees(T) is the set of subtrees of T.

Def: T Œ T is regular if subtrees(T) is finite. Tr is the set
of regular trees.

Lesson 9: Recursive Types 8

Subtype relation

The subtyping relation on T is defined as the greatest
fixed point of the relation generator function

S(R) = {(T, Top) | T Œ T}
 » {(S1 ¥ S2, T1 ¥ T2) | (S1,T1), (S2,T2) Œ R}
 » {(S1 Æ S2, T1 Æ T2) | (T1,S1), (S2,T2) Œ R}

 Sr is the restriction of S to Tr (regular trees).

 Prop: Sr is finite state.

Lesson 9: Recursive Types

5

Lesson 9: Recursive Types 9

m-Types

Def: Tm-raw, the set of raw m-types, is defined by the grammar:

T ::= X | Top | T ¥ T | T Æ T | mX.T

This contains useless terms like mX.X that we should exclude.

Def: T Œ Tm-raw is contractive if for any subtree of Tof the
form mX.mX1. ... mXn. S, S is not X. (I.e. there is always an
occurrence of ¥ or Æ between a binder mX and an applied
occurrence of X. Tm denotes the set of contractive m-types.

Can define a function treeof : Tm Æ T mapping m-types to
tree types.

Lesson 9: Recursive Types 10

Subtype relation for m-Types

The generating function Sm for the subtyping relation on Tm

is given by

Sm(R) = {(S, Top) | S Œ Tm}
 » {(S1 ¥ S2, T1 ¥ T2) | (S1,T1), (S2,T2) Œ R}
 » {(S1 Æ S2, T1 Æ T2) | (T1,S1), (S2,T2) Œ R}
 » {(S, mX.T) | (S, [X -> mX.T]T) Œ R}
 » {(mX.S, T) | ([X -> mX.S]S, T) Œ R, T ≠ Top,
 T ≠ mY.T1}

Lesson 9: Recursive Types

6

Lesson 9: Recursive Types 11

Subtype relation for m-Types

Sm is invertible with support function

support(S,T)
= ∅ if T = Top
= {(S1,T1), (S2,T2)} if S = S1 ¥ S2 and T = T1 ¥ T2

= {(T1,S1), (S2,T2)} if S = S1 Æ S2 and T = T1 Æ T2

= {(S, [X -> mX.T1]T1)} if T = mX.T1

= {([X -> mX.S1]S1, T)} if S = mX.S1, T ≠ Top, T ≠ mY.T1

= ↑

Thm: (S,T) Œ nSm iff treeof(S,T) Œ nS

Lesson 9: Recursive Types 12

Subtyping algorithm

Specialize gfpt to Sm.

subtype (S,T)
= if (S,T) Œ A then A
 else let A0 = A»{(S,T)} in
 if T = Top then A0

 else if S = S1 ¥ S2 and T = T1 ¥ T2 then
let A1 = subtype(A0,S1,T1) in subtype(A1,S2,T2)

 else if S = S1 Æ S2 and T = T1 Æ T2 then
let A1 = subtype(A0,T1,S1) in subtype(A1,S2,T2)

 else if T = mX.T1 then subtype(A0,S,[X -> mX.T1]T1)
 else if S = mX.S1 then subtype(A0,[X -> mX.S1]S1)
 else fail

Lesson 9: Recursive Types

7

Lesson 9: Recursive Types 13

Subtyping Iso-recursive types

The Amber rule:

S, X <: Y |- S <: T

S |- mX.S <: mY.T
(S-Amber)

X <: Y Œ S

S |- X <: Y
(S-Assumption)

