
Lesson12: Existential Types

1

Lesson 12
Existential Types

2/29
Chapter 24

Lesson 13: Existential Types 2

Existential Types

• Existential packages
• Existential types and abstract types
• Existential types and objects
• Encoding existentials with universals

Lesson12: Existential Types

2

Lesson 13: Existential Types 3

Existential types

Existential types:

 T ::= . . . | $X.T

Pierce uses the alternative, nonstandard notation {$X, T}
to suggest that the existential value is a mixed type-value
tuple.

Lesson 13: Existential Types 4

Existential types

A value of type $X.T is a package with a witness type T'
for X and a value term t : [X => T']T.

 pack X = T' with t as T : $X.T (conventional notation)
 {*T', t} as {$X, T} (Pierce's notation)

The Intro typing rule for existential types:

G |- t1 : [X => U]T1

G |- {*U, t1} as {$X, T1} : {$X, T1}
(T- Pack)

Lesson12: Existential Types

3

Lesson 13: Existential Types 5

Examples of Existential types

{*Nat, 3} as {$X, X} : {$X, X}
{*Bool, true} as {$X, X} : {$X, X}

p = {*Nat, {a = 5, f = lx : Nat. succ x}} as {$X, {a : X, f : X -> Nat}}
p : {$X, {a : X, f : X -> Nat}}

q = {*Bool, {a = true, f = lx : Bool. 0}} as {$X, {a : X, f : X -> Nat}}
q : {$X, {a : X, f : X -> Nat}}

The type part is hidden (opaque, abstract), and the value
part provides an interface for interpreting the hidden type.

Lesson 13: Existential Types 6

Unpacking existential values

Unpacking an existential: let {X,x} = t1 in t2

G |- t1 : {$X, T1}

G |- let {X,x} = t1 in t2 : T2

(T- Unpack)
G, X, x: T1 |- t2 : T2

Type variable X cannot occur in T2 -- it is not in scope
(i.e. doesn't appear in the context G). This means that
the name X of the existential witness type cannot "escape"
from the let expression.

Also, within the body t2, the type X is abstract and can only
be used through the interface provided by x : T1.

Lesson12: Existential Types

4

Lesson 13: Existential Types 7

Abstract types as Existential types

Counter = {$Counter, {new: Counter, get: Counter -> Nat,
 inc: Counter -> Counter}}

counter0 = {*Nat,
 {new = 1,
 get = lx : Nat. x,
 inc = lx : Nat. succ x}} as Counter

counter0 : Counter

let {C, cops} = counter0 in
 let add2 = lc : C. cops.inc(cops.inc c)
 in cops.get(add2(cops.new))
==> 4: Nat

Lesson 13: Existential Types 8

Abstract types as Existential types

The idea:

 let {X,x} = t1 in t2

The existential value packages the representation type
of the abstract type (the existential witness), with the
interface values through which to use the type.

The client code (t2, the body of the let), does not have access
to the representation type, and can only refer to it through
the bound (and opaque) name X.

All code that interacts via the abstract type has to be included
in t2. This limitation can be overcome using the dot notation.

Lesson12: Existential Types

5

Lesson 13: Existential Types 9

Object types as Existential types

Counter = {$S, {state: S,
methods: {get: S -> Nat, inc: S -> S}}}

c = {*Nat,
 {state = 1,
 methods = {get = lx : Nat. x,

 inc = lx : Nat. succ x}}} as Counter
c : Counter
sendget = lx : Counter.
 let {S, body} = x in
 body.methods.get(body.state)

sendget c ==> 1: Nat

Lesson 13: Existential Types 10

Object types as Existential types

The idea:

The witness type of the existential value is the
representation of the internal state of the object,
and it is hidden by the existential package.

The methods operate on this internal state.

Lesson12: Existential Types

6

Lesson 13: Existential Types 11

Encoding Existentials with Universals

Let
 {$X, T} =def "Y. ("X. T -> Y) -> Y

Then
 {*S, t} =def LY. lf : ("X. T -> Y). f [S] (t)

and
 let {X, x} = t1 in t2 =def t1 [T2] (LX. lf : T1. t2)

where t1 : {$X, T} and t2 : T2.

