
Lesson 11: Universal Types

1

Lesson 11
Universal Types

2/28
Chapter 23

Lesson 11: Universal Types 2

Universal Types and System F

• Varieties of polymorphism
• System F
• Examples
• Basic properties
• Erasure
• Evaluation issues
• Parametricity
• Impredicativity

Lesson 11: Universal Types

2

Lesson 11: Universal Types 3

Varieties of polymorphism

• parametric polymorphism
• ad hoc polymorphism (overloading)

– conventional
– multimethods
– Haskell type classes

• intensional polymorphism
– analyzing and dispatching off of type structure

• subtype polymorphism (subsumption)
• OO "polymorphism" ("dynamic binding")
• row polymorphism (open, extensible record types)

Lesson 11: Universal Types 4

System F

History: Girard 1972; Reynolds 1974

Idea: lambda abstraction over type variables, defining functions
over types.

id = LX. lx: X. x
id : "X. X -> X

id [Nat] Æ [X => Nat] lx: X. x = lx: Nat. x
id [Nat] : [X => Nat](X -> X) = Nat -> Nat

Lesson 11: Universal Types

3

Lesson 11: Universal Types 5

System F: abstract syntax

Terms, values, types, contexts:

t ::= x | lx: T. t | t t | LX. t | t[T]

v ::= lx: T. t | LX. t

T ::= X | T -> T | "X. T | <base types>

G ::= ∅ | G, x : T | G, X

Lesson 11: Universal Types 6

System F: evaluation

Type-passing semantics: evaluation involves types

t1 Æ t1'

(LX. t1)[T2] Æ [X => T2] t1

(E-TApp)
t1[T2] Æ t1'[T2]

(E-TAppTabs)

Lesson 11: Universal Types

4

Lesson 11: Universal Types 7

System F: typing

Type-level abstraction and application rules:

G, X |- t : T
(E-TAbs)

G |- LX. t : "X. T

G |- t : "X. T1 (E-TApp)
G |- t[T2] : [X => T2] T1

Lesson 11: Universal Types 8

System F: examples

double = LX. lf: X -> X. la: X. f(f a)
double : "X. (X -> X) -> X -> X

doubleNat = double[Nat]
doubleNat : (Nat -> Nat) -> Nat -> Nat

selfApp = lx: "X. (X -> X). x["X. (X -> X)] x
selfApp : ("X. (X -> X)) -> ("X. (X -> X))

guadruple = LX. double[X -> X] (double[X])
quadruple : "X. (X -> X) -> X -> X

Lesson 11: Universal Types

5

Lesson 11: Universal Types 9

System F: lists

nil : "X. List X
cons : "X. X -> List X -> List X
isnil : "X. List X -> Bool
head : "X. List X -> X
tail : "X. List X -> List X

map = LX. LX. lf: X -> Y.
 fix(lm: List X -> List Y).
 ll: List X.
 if isnil [X] l

then nil [Y]
else cons [Y] (f (head[X] l)) (m (tail [X] l))))

map : "X. "X. (X -> Y) -> List X -> List Y

Lesson 11: Universal Types 10

System F: Church encodings

CBool = "X. X -> X -> X

tru = LX. lx: X. ly: X. x : CBool
fls = LX. lx: X. ly: X. y : CBool

Any other terms of type CBool?

CNat = CBool = "X. (X -> X) -> X -> X

c0 = LX. ls: X -> X. lz: X. z
c1 = LX. ls: X -> X. lz: X. s z
c2 = LX. ls: X -> X. lz: X. s (s z)
. . .
Any other terms of type CNat?

Lesson 11: Universal Types

6

Lesson 11: Universal Types 11

System F: Encoding Lists

List X = "R. (X -> R -> R) -> R -> R

nil = LX. (LR. lc: X -> R -> R. ln: R. n) as List X
nil : "X. List X

cons = LX. lhd:X. ltl: List X.
 (LR. lc: X -> R -> R. ln: R. c hd (tl[R] c n)) as List X
cons : "X. X -> List X -> List X

Lesson 11: Universal Types 12

Theoretical properties

Thm [Preservation]: If G |- t : T and t Æ t' then G |- t' : T.

Thm [Progress]: If t is a closed, well-typed term (∅ |- t : T)
 then either t is a value or t Æ t' for some t'.

Proofs are similar to those for simply typed lambda calculus
with added cases for type abstraction and application.

Theorem [Normalization]: Well-typed terms of System F are
 normalizing.

Proof: very delicate!

Lesson 11: Universal Types

7

Lesson 11: Universal Types 13

Erasure and type reconstruction

Easy to map System F to untyped lambda calculus:

erase (x) = x
erase (lx: T. t) = lx. erase(t)
erase (t1 t2) = (erase(t1)) (erase(t2))
erase (LX. t) = erase(t)
erase (t[T]) = erase(t)

Thm [Wells, 94]: It is undecidable whether, given a closed
term m of the untyped lambda calculus, there is a well-typed
term t in System F such that m = erase(t).

However, there is lots of work on partial solutions to the
type reconstruction problem for System F.

Lesson 11: Universal Types 14

Erasure and evaluation

Erasure operational semantics throws away types before
evaluation. But have to preserve value nature of LX. t:

 let f = LX. error in 0

produces no error because LX is suspending.
So define erasure for evaluation as follows:

erase (x) = x
erase (lx: T. t) = lx. erase(t)
erase (t1 t2) = (erase(t1)) (erase(t2))
erase (LX. t) = l_.erase(t)
erase (t[T]) = erase(t)()

Lesson 11: Universal Types

8

Lesson 11: Universal Types 15

Impredicativity

System F is impredicative, meaning that polymorphic types
are defined by (universal) quantification over the universe
of all types, including the polymorphic types themselves.

Another way of puting it is that polymorphic types are
first-class in the world of types.

Polymorphism in ML is predicative, and polymorphic types
are therefore second-class (e.g terms do not have polymorphic
types).

