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Universal Types and System F

• Varieties of polymorphism
• System F
• Examples
• Basic properties
• Erasure
• Evaluation issues
• Parametricity
• Impredicativity
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Varieties of polymorphism

• parametric polymorphism
• ad hoc polymorphism (overloading)

– conventional
– multimethods
– Haskell type classes

• intensional polymorphism
– analyzing and dispatching off of type structure

• subtype polymorphism (subsumption)
• OO "polymorphism" ("dynamic binding")
• row polymorphism (open, extensible record types)
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System F

History:  Girard 1972; Reynolds 1974

Idea: lambda abstraction over type variables, defining functions
over types.

id  =  LX. lx: X. x
id  :  "X. X -> X

id [Nat]  Æ  [X => Nat] lx: X. x  =  lx: Nat. x
id [Nat] : [X => Nat](X -> X)  =  Nat -> Nat
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System F: abstract syntax

Terms, values, types, contexts:

t  ::=  x  |  lx: T. t  |  t t  |  LX. t  |  t[T] 

v  ::=   lx: T. t  |  LX. t

T ::=  X  |  T -> T  |  "X. T  |  <base types>

G  ::=  ∅  |  G, x : T  |  G, X
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System F: evaluation

Type-passing semantics:  evaluation involves types

t1 Æ t1'

(LX. t1)[T2] Æ [X => T2] t1

(E-TApp)
t1[T2] Æ t1'[T2]

(E-TAppTabs)
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System F: typing

Type-level abstraction and application rules:

G, X |- t : T
(E-TAbs)

G |- LX. t : "X. T

G |- t : "X. T1 (E-TApp)
G |- t[T2] : [X => T2] T1
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System F: examples

double  =  LX. lf: X -> X. la: X. f(f a)
double  :   "X. (X -> X) -> X -> X

doubleNat  =  double[Nat]
doubleNat  :  (Nat -> Nat) -> Nat -> Nat

selfApp  =  lx: "X. (X -> X). x["X. (X -> X)] x
selfApp  :  ("X. (X -> X)) -> ("X. (X -> X))

guadruple  =  LX. double[X -> X] (double[X])
quadruple  :  "X. (X -> X) -> X -> X
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System F: lists

nil :  "X. List X
cons :  "X. X -> List X -> List X
isnil :  "X. List X -> Bool
head :  "X. List X -> X
tail :  "X. List X -> List X

map  =  LX. LX. lf: X -> Y.
  fix(lm: List X -> List Y).
     ll: List X. 
         if isnil [X] l

then nil [Y]
else cons [Y] (f (head[X] l)) (m (tail [X] l))))

map  :  "X. "X. (X -> Y) -> List X -> List Y
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System F: Church encodings

CBool  =  "X. X -> X -> X

tru  =  LX. lx: X. ly: X. x  :  CBool
fls  =  LX. lx: X. ly: X. y   :  CBool

Any other terms of type CBool?

CNat  =  CBool  =  "X. (X -> X) -> X -> X

c0  =  LX. ls: X -> X. lz: X. z
c1  =  LX. ls: X -> X. lz: X. s z
c2  =  LX. ls: X -> X. lz: X. s (s z)
. . .
Any other terms of type CNat?
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System F: Encoding Lists

List X  =  "R. (X -> R -> R) -> R -> R

nil  =  LX. (LR. lc: X -> R -> R.  ln: R. n) as List X
nil  :  "X. List X

cons =  LX. lhd:X. ltl: List X.
              (LR. lc: X -> R -> R.  ln: R. c hd (tl[R] c n)) as List X
cons  :  "X. X -> List X -> List X
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Theoretical properties

Thm [Preservation]:  If G |- t : T and  t Æ t' then G |- t' : T.
 
Thm [Progress]:  If t is a closed, well-typed term (∅ |- t : T) 
   then either t is a value or t Æ t' for some t'.

Proofs are similar to those for simply typed lambda calculus
with added cases for type abstraction and application.

Theorem [Normalization]: Well-typed terms of System F are
   normalizing.

Proof:  very delicate!
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Erasure and type reconstruction

Easy to map System F to untyped lambda calculus:

erase (x) =  x
erase (lx: T. t) =  lx. erase(t)
erase (t1 t2) =  (erase(t1)) (erase(t2)) 
erase (LX. t) =  erase(t)
erase (t[T]) =  erase(t)

Thm [Wells,  94]:  It is undecidable whether, given a closed
term m of the untyped lambda calculus, there is a well-typed
term t in System F such that m = erase(t).
 
However, there is lots of work on partial solutions to the
type reconstruction problem for System F.
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Erasure and evaluation

Erasure operational semantics throws away types before
evaluation.  But have to preserve value nature of LX. t:

    let f = LX. error in 0

produces no error because LX is suspending.
So define erasure for evaluation as follows:

erase (x) =  x
erase (lx: T. t) =  lx. erase(t)
erase (t1 t2) =  (erase(t1)) (erase(t2)) 
erase (LX. t) =  l_.erase(t)
erase (t[T]) =  erase(t)()
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Impredicativity

System F is impredicative, meaning that polymorphic types
are defined by (universal) quantification over the universe
of all types, including the polymorphic types themselves.

Another way of puting it is that polymorphic types are
first-class in the world of types.

Polymorphism in ML is predicative, and polymorphic types
are therefore second-class (e.g terms do not have polymorphic
types).


