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Topics

• abstract syntax
• inductive definitions and proofs
• evaluation
• modeling runtime errors
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An abstract syntax

t ::=
true
false
if t then t else t
0
succ t
pred t
iszero t

Terms defined by a BNF style grammar.
Not worried about ambiguity.
t is a syntactic metavariable 
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example terms

true

0

succ 0

if false then 0
   else pred(if true then succ 0 else 0)

iszero true

if 0 then true else pred 0
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Inductive defn of terms

Defn: The set of terms is the smallest set
T such that 

1. {true, false, 0} Õ T 

2. if t1 Œ T , then {succ t, pred t, iszero t} Õ T  

3.  if t1, t2, t3 Œ T , then if t1 then t2 else t3 Œ T 
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Terms defined using inference rules

Defn: The set of terms is defined by the following
rules:

  true Œ T          false Œ T         0 Œ T   

     t Œ T                 t Œ T                    t Œ T 
succ t Œ T       pred t Œ T       iszero t Œ T 

t1 Œ T t2 Œ T t3 Œ T 

if t1 then t2 else t3 Œ T 
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Definition by induction, concretely

Defn: For each i, define Si as follows
      S(0) = ∅

      S(i+1) = {true, false, 0}
      » {succ t, pred t, iszero t| t Œ S(i)}

         » {if t1 then t2 else t3 | t1,t2,t3 Œ S(i)}
Then let
      S = » {S(i) | i Œ Nat}
Proposition:   S = T
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Defining functions inductively

consts(true) = {true}
consts(false) = {false}
consts(0) = {0}
consts(succ t) = consts(t)
consts(pred t) = consts(t)
consts(iszero t) = consts(t)
consts(if t1 then t2 else t3) =

  consts(t1)» consts(t1)» consts(t1)

Constants appearing in a term
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Defining functions inductively

size(true) = 1
size(false) = 1
size(0) = 1
size(succ t) = size(t) + 1
size(pred t) = size(t) + 1
size(iszero t) = size(t) + 1
size(if t1 then t2 else t3) =

  size(t1) + size(t1) + size(t1) + 1

Size of a term:
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Defining functions inductively

depth(true) = 1
depth(false) = 1
depth(0) = 1
depth(succ t) = depth(t) + 1
depth(pred t) = depth(t) + 1
depth(iszero t) = depth(t) + 1
depth(if t1 then t2 else t3) =
  max(depth(t1),depth(t1),depth(t1)) + 1

Depth of a term
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Proof by induction (on depth)

If, for each term s,
   given P(r) for all terms with
        depth(r) < depth(s),
   we can show P(s)
then P(s) holds for all terms.
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Proof by induction (on size)

If, for each term s,
   given P(r) for all terms with
        size(r) < size(s),
   we can show P(s)
then P(s) holds for all terms.
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Proof by induction (on depth)

If, for each term s,
   given P(r) for all immediate
   subterms of S,
   we can show P(s)
then P(s) holds for all terms.
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Operational semantics

An abstract machine for with instructions
on how to evaluate terms of the language.

In simple cases, the terms of the language can
be interpretedas the instructions.

The values (results) can also be taken to
be (simple) terms in the language.
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Evaluation: booleans

Terms
   t :: = true
         | false
         | if t then t else t

Values
   v :: = true
         | false
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Evaluation (reduction) relation

An evaluation relation is a binary relation

t Æ t’

on terms representing one step of evaluation.
This is known as a small-step or one-step evaluation
relation.

A normal form is a term which is fully evaluated, i.e.
for which no further evaluation is possible.
Thus, t is a normal form term if there is no term
t’ such that t Æ t’.
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Evaluation rules for boolean terms

The evaluation releation t Æ  t’ is the least relation
satisfying the following rules.

if true then t2 else t3 Æ  t2

if false then t2 else t3 Æ  t3

        t1 Æ  t1’
if t1 then t2 else t3 Æ
   if t1’ then t2 else t3

1/8/2002 Lesson 1: Untyped Arithmetic 18

Evaluation strategy

Evaluation rules can determine an evaluation strategy
that limits where evaluation takes place.

Example:
    if true then (if false then false else true) else true
    Æ  if false then false else true
But not
    if true then (if false then false else true) else true
    Æ if true then true else true
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Determinacy

Evalution of boolean terms is deterministic. That is if
t Æ  t’ and t Æ  t’’, then t’ = t’’.

Proof by induction on derivations of t Æ  t’.
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Values and normal forms

Every value is a normal form (is in normal form).

For booleans, every normal form is a value.

But generally, not all normal forms are values.

     E.g.  pred(true)

Such non-value normal forms are called stuck.
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Multistep evaluation

Defn:  Let Æ* be the reflexive, transitive closure
   of Æ .  I.e Æ* is the least reln such that

       (1) if t Æ  t’ then t Æ* t’ 
       (2) t Æ* t
       (3) if t Æ*  t’ and t’ Æ*  t’’ then t Æ*  t’’
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Boolean normal forms

Uniqueness of normal forms
Theorem: If t Æ* u and t Æ* u’ where u and u’ are
   normal forms, then u = u’.
Proof: determinacy of Æ

Existence of normal forms
Theorem: For any term t, there is a normal form
  u such that t Æ* u.
Proof: If t Æ t’, then t’ is smaller than t, i.e.
  size(t’) < size(t).
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Evaluation for arithmetic

Terms
   t ::= ... | 0 | succ t | pred t | iszero t

Values
   v ::= ... | nv
   nv ::=  0 | succ nv
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Base computation rules

pred 0 Æ 0 

pred (succ nv) Æ nv 

iszero 0 Æ true 

iszero (succ nv) Æ false 

E-PredZero 

E-PredSucc 

E-IszeroZero 

E-IszeroSucc

Note that the E-PredSucc and E-IsZeroSucc
rules are restricted to the case where the
argument is a value (call-by-value).
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Congruence rules

t Æ t’
succ t Æ succ t’

t Æ t’

pred t Æ pred t’

t Æ t’

iszero t Æ iszero t’

E-Succ

E-Pred

E-Iszero
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Homework 1

• Do exercises 3.5.13 and 3.5.14.
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Stuck terms and runtime errors

Stuck terms
Defn: a closed term is stuck if it is a normal form
  but is not a value.

Examples:
   pred true
   if succ(0) then true else false

We can take stuck terms as representing runtime
errors.


