
Lesson 1: Untyped Arithmetic

1

Lesson 1
Untyped Arithmetic Expressions

1/8/2002

1/8/2002 Lesson 1: Untyped Arithmetic 2

Topics

• abstract syntax
• inductive definitions and proofs
• evaluation
• modeling runtime errors

Lesson 1: Untyped Arithmetic

2

1/8/2002 Lesson 1: Untyped Arithmetic 3

An abstract syntax

t ::=
true
false
if t then t else t
0
succ t
pred t
iszero t

Terms defined by a BNF style grammar.
Not worried about ambiguity.
t is a syntactic metavariable

1/8/2002 Lesson 1: Untyped Arithmetic 4

example terms

true

0

succ 0

if false then 0
 else pred(if true then succ 0 else 0)

iszero true

if 0 then true else pred 0

Lesson 1: Untyped Arithmetic

3

1/8/2002 Lesson 1: Untyped Arithmetic 5

Inductive defn of terms

Defn: The set of terms is the smallest set
T such that

1. {true, false, 0} Õ T

2. if t1 Œ T , then {succ t, pred t, iszero t} Õ T

3. if t1, t2, t3 Œ T , then if t1 then t2 else t3 Œ T

1/8/2002 Lesson 1: Untyped Arithmetic 6

Terms defined using inference rules

Defn: The set of terms is defined by the following
rules:

 true Œ T false Œ T 0 Œ T

 t Œ T t Œ T t Œ T
succ t Œ T pred t Œ T iszero t Œ T

t1 Œ T t2 Œ T t3 Œ T

if t1 then t2 else t3 Œ T

Lesson 1: Untyped Arithmetic

4

1/8/2002 Lesson 1: Untyped Arithmetic 7

Definition by induction, concretely

Defn: For each i, define Si as follows
 S(0) = ∅

 S(i+1) = {true, false, 0}
 » {succ t, pred t, iszero t| t Œ S(i)}

 » {if t1 then t2 else t3 | t1,t2,t3 Œ S(i)}
Then let
 S = » {S(i) | i Œ Nat}
Proposition: S = T

1/8/2002 Lesson 1: Untyped Arithmetic 8

Defining functions inductively

consts(true) = {true}
consts(false) = {false}
consts(0) = {0}
consts(succ t) = consts(t)
consts(pred t) = consts(t)
consts(iszero t) = consts(t)
consts(if t1 then t2 else t3) =

 consts(t1)» consts(t1)» consts(t1)

Constants appearing in a term

Lesson 1: Untyped Arithmetic

5

1/8/2002 Lesson 1: Untyped Arithmetic 9

Defining functions inductively

size(true) = 1
size(false) = 1
size(0) = 1
size(succ t) = size(t) + 1
size(pred t) = size(t) + 1
size(iszero t) = size(t) + 1
size(if t1 then t2 else t3) =

 size(t1) + size(t1) + size(t1) + 1

Size of a term:

1/8/2002 Lesson 1: Untyped Arithmetic 10

Defining functions inductively

depth(true) = 1
depth(false) = 1
depth(0) = 1
depth(succ t) = depth(t) + 1
depth(pred t) = depth(t) + 1
depth(iszero t) = depth(t) + 1
depth(if t1 then t2 else t3) =
 max(depth(t1),depth(t1),depth(t1)) + 1

Depth of a term

Lesson 1: Untyped Arithmetic

6

1/8/2002 Lesson 1: Untyped Arithmetic 11

Proof by induction (on depth)

If, for each term s,
 given P(r) for all terms with
 depth(r) < depth(s),
 we can show P(s)
then P(s) holds for all terms.

1/8/2002 Lesson 1: Untyped Arithmetic 12

Proof by induction (on size)

If, for each term s,
 given P(r) for all terms with
 size(r) < size(s),
 we can show P(s)
then P(s) holds for all terms.

Lesson 1: Untyped Arithmetic

7

1/8/2002 Lesson 1: Untyped Arithmetic 13

Proof by induction (on depth)

If, for each term s,
 given P(r) for all immediate
 subterms of S,
 we can show P(s)
then P(s) holds for all terms.

1/8/2002 Lesson 1: Untyped Arithmetic 14

Operational semantics

An abstract machine for with instructions
on how to evaluate terms of the language.

In simple cases, the terms of the language can
be interpretedas the instructions.

The values (results) can also be taken to
be (simple) terms in the language.

Lesson 1: Untyped Arithmetic

8

1/8/2002 Lesson 1: Untyped Arithmetic 15

Evaluation: booleans

Terms
 t :: = true
 | false
 | if t then t else t

Values
 v :: = true
 | false

1/8/2002 Lesson 1: Untyped Arithmetic 16

Evaluation (reduction) relation

An evaluation relation is a binary relation

t Æ t’

on terms representing one step of evaluation.
This is known as a small-step or one-step evaluation
relation.

A normal form is a term which is fully evaluated, i.e.
for which no further evaluation is possible.
Thus, t is a normal form term if there is no term
t’ such that t Æ t’.

Lesson 1: Untyped Arithmetic

9

1/8/2002 Lesson 1: Untyped Arithmetic 17

Evaluation rules for boolean terms

The evaluation releation t Æ t’ is the least relation
satisfying the following rules.

if true then t2 else t3 Æ t2

if false then t2 else t3 Æ t3

 t1 Æ t1’
if t1 then t2 else t3 Æ
 if t1’ then t2 else t3

1/8/2002 Lesson 1: Untyped Arithmetic 18

Evaluation strategy

Evaluation rules can determine an evaluation strategy
that limits where evaluation takes place.

Example:
 if true then (if false then false else true) else true
 Æ if false then false else true
But not
 if true then (if false then false else true) else true
 Æ if true then true else true

Lesson 1: Untyped Arithmetic

10

1/8/2002 Lesson 1: Untyped Arithmetic 19

Determinacy

Evalution of boolean terms is deterministic. That is if
t Æ t’ and t Æ t’’, then t’ = t’’.

Proof by induction on derivations of t Æ t’.

1/8/2002 Lesson 1: Untyped Arithmetic 20

Values and normal forms

Every value is a normal form (is in normal form).

For booleans, every normal form is a value.

But generally, not all normal forms are values.

 E.g. pred(true)

Such non-value normal forms are called stuck.

Lesson 1: Untyped Arithmetic

11

1/8/2002 Lesson 1: Untyped Arithmetic 21

Multistep evaluation

Defn: Let Æ* be the reflexive, transitive closure
 of Æ . I.e Æ* is the least reln such that

 (1) if t Æ t’ then t Æ* t’
 (2) t Æ* t
 (3) if t Æ* t’ and t’ Æ* t’’ then t Æ* t’’

1/8/2002 Lesson 1: Untyped Arithmetic 22

Boolean normal forms

Uniqueness of normal forms
Theorem: If t Æ* u and t Æ* u’ where u and u’ are
 normal forms, then u = u’.
Proof: determinacy of Æ

Existence of normal forms
Theorem: For any term t, there is a normal form
 u such that t Æ* u.
Proof: If t Æ t’, then t’ is smaller than t, i.e.
 size(t’) < size(t).

Lesson 1: Untyped Arithmetic

12

1/8/2002 Lesson 1: Untyped Arithmetic 23

Evaluation for arithmetic

Terms
 t ::= ... | 0 | succ t | pred t | iszero t

Values
 v ::= ... | nv
 nv ::= 0 | succ nv

1/8/2002 Lesson 1: Untyped Arithmetic 24

Base computation rules

pred 0 Æ 0

pred (succ nv) Æ nv

iszero 0 Æ true

iszero (succ nv) Æ false

E-PredZero

E-PredSucc

E-IszeroZero

E-IszeroSucc

Note that the E-PredSucc and E-IsZeroSucc
rules are restricted to the case where the
argument is a value (call-by-value).

Lesson 1: Untyped Arithmetic

13

1/8/2002 Lesson 1: Untyped Arithmetic 25

Congruence rules

t Æ t’
succ t Æ succ t’

t Æ t’

pred t Æ pred t’

t Æ t’

iszero t Æ iszero t’

E-Succ

E-Pred

E-Iszero

1/8/2002 Lesson 1: Untyped Arithmetic 26

Homework 1

• Do exercises 3.5.13 and 3.5.14.

Lesson 1: Untyped Arithmetic

14

1/8/2002 Lesson 1: Untyped Arithmetic 27

Stuck terms and runtime errors

Stuck terms
Defn: a closed term is stuck if it is a normal form
 but is not a value.

Examples:
 pred true
 if succ(0) then true else false

We can take stuck terms as representing runtime
errors.

